اثر ویژگی‌های برگ ارقام مختلف گلابی بر ساختار و ثبات جمعیت پسیل گلابی [Cacopsylla pyricola (Foester)]

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، پژوهشکده میوه‌های معتدله و سردسیری، موسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

2 دانشیار، پژوهشکده میوه‌های معتدله و سردسیری، موسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

10.22092/spj.2025.367396.1382

چکیده

پسیل گلابی [Cacopsylla pyricola (Foerster)] یکی از آفات مهم گلابی است. اولین گام در دستیابی به ارقام مقاوم، شناسایی عوامل مؤثر بر تغییر ساختار و پایداری جمعیت آفت بر روی میزبان است. این پژوهش در سال‌های 1399 تا 1402 انجام شد. در این بررسی، نُه رقم گلابی شامل بوهمه، شاه‌میوه، نطنزی، سبری، درگزی، لوئیزبون، هاروست کوئین، پوتوماک و کوشیا مورد مطالعه قرار گرفتند. جمعیت تخم، پوره و حشرات کامل پسیل گلابی در اوایل فرورین تا آبان نمونه­برداری شد. شاخص­های رنگ برگ شامل R (قرمز)، G (سبز) و B (آبـی و زرد )، سطح برگ، میزان کلروفیل و تراکم پرز برگ نیز مطالعه شدند. ارتباط بین صفات برگ با شاخص پایداری جمعیت از طریق همبستگی وتأثیرتغییرات فصلی صفات با تحلیل سری زمانی بررسی شدند. نتایج نشان داد که بالاترین و پایین­ترین ثبات جمعیتی در تخم حشره در ارقام شاه میوه و نطنزی به ترتیب معادل 470/4و 33/7تخم در مهر و اردیبهشت بود. بالاترین و پایین­ترین ثبات جمعیتی پوره به ترتیب در ارقام شاه­میوه و درگزی معادل 1399/2و 8/6عدد در شهریور و اردیبهشت بود. در حشره­کامل نیز بالاترین و پایین­ترین ثبات جمعیتی در ارقام شاه میوه و درگزی به ترتیب معادل 126/5و 3/3 حشره بود. بالاترین همبستگی تقاطعی شاخص­های رنگ شامل R، G وB در اردیبهشت و 0/92-0/91و در سطح برگ معادل 0/74و در خرداد ثبت شد. تراکم پرز در ابتدای فصل تا مرداد دارای آثار منفی و معنی­دار بر ثبات جمعیت بود. این صفات می‌توانند برای غربالگری ارقام گلابی برای مقاومت به پسیل گلابی استفاده شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Leaf Characteristics of Different Pear Cultivars on the Population Structure and Stability of Pear Psylla [Cacopsylla pyricola (Foester)]

نویسندگان [English]

  • M. Latifian 1
  • H. Abdollahi 2
1 Professor, Temperate Fruit Research Center, Horticultural Science Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.
2 Associate Professor, Temperate Fruit Research Center, Horticultural Science Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.
چکیده [English]

Pear psylla [Cacopsylla pyricola (Foerster)] is one of the important pest of pear trees. Understanding of effective factors on population structure and stability of the pest is the first step in selection and development of resistant pear cultivars. This research was conducted from 2020 to 2023. Nine pears cultivars including: Boheme, Shah Miveh, Natanzi, Sebri, Dargazi, Louis Bonne, Harvest Queen, Potomac, and Coscia were studied. The Pear psylla populations were sampled from early March to November. Leaf traits were also studied. The results showed that the highest and the lowest population stability of in the egg in cv. Shah Miveh and cv. Natanzi were 470.4 and 33.7 in October and May, respectively. The highest cross-correlation coefficient (0.91-0.92) of color indices including R (red), G (green), and B (blue and yellow) observed in May, and for the leaf surface are was 0.74 in June. The lint density had significant effect on the population stability from the beginning of the season until August.These traits can be used to screen resistance pear cultivar against pear psylla.
 
Keywords: Pear, adult insect, leaf surface area, lint density, esistance.
 
Introduction
The pear psylla [(Cacopsylla pyricola (Foerster)] is an important pest of pear trees and has a worldwide distribution (Luo et al., 2012). In the climatic conditions of Iran, where spring and summer are dry and rainfall is low, the indirect damage caused by honeydew is more than the damage caused by sucking plant sap (Behdad, 1991). Researches that have been conducted on different pests have shown that leaf morphological characteristics, such as leaf size, leaf thickness, presence of villi, thickness of cuticle, presence of waxy material on the epidermis, color, chlorophyll content, water content, overall shape, and other traits are effective on pest population changes during growing season (Khalil et al., 2017; Rutledge et al., 2003). Understanding the effective factors that drive changes in population structure and stability is the initial step in selection and development resistant pear cultivars. The characteristics of the host plant affect the abundance, structure, stability and diversity of the pest population (Steffan-Dewenter et al., 2001). Therefore, this research was conducted to determine the effect of morphological characteristics of leaf of nine pear cultivars on population structure and stability of pear psylla and their relationship in different growth stages of pear psylla.
 
Materials and Methods
Nine pear cultivars including: Boheme, Shah Miveh, Natanzi, Sebri, Dargazi, Louise Bonne, Harvest Queen, Potomac, and Coscia were used in this study. This research was conducted from 2020 to 2023. Data of the population of different stages of development of psylla pear was scored at the peak of its activity, i.e. from the beginning of April to November, every seven days. From each cultivar, 10 leaves were randomly selected from the crown’s lower, middle, and upper parts. The monthly average of the effective population at different growth stages and the percentage of each stage relative to the total population density were calculated. The population stability index for the active pear psylla population on each pear cultivars was estimated. The leaf color index including R (red), G (green), and B (blue and yellow) were determined using the mobile phone software called Color Grab 3.9.2 with constant light and at a distance of 15 cm from the leaf surface. A relatively accurate leaf surface area was estimated using the mobile phone software Easy Leaf Area. The leaf chlorophyll content was evaluated using the OPTi-Sciences CCM-200 chlorophyll meter.
 
Results and Discussion
The maximum population density in the first and second activity periods was 242.3 and 359.3, respectively. The minimum density in the first and second activity periods was 73.2 and 175.5, respectively. The lowest and highest percentage of egg density in the population structure was recorded at 16% and 18 %, respectively, in May and September. The highest and lowest population stability, in different growth stage, of pear psylla eggs were in cv. Shah Miveh (470.4 eggs) and cv. Natanzi (33.7eggs), in October and May respectively. The highest and the lowest population stability index of nymphs and beloged to cv. Shah Miveh (2.2 nymphs) and cv. Dargazi (8.6 nymphs), in October and May respectively. The highest and lowest population stability index
of adult insects recorded in cv. Shah Miveh (126.5 adult insects) and cv. Darghazi
(3.3 adult insect), respectively.
Leaf color indices (R, G, and B) with correlation coefficients of more than 0.9, leaf surface area index and lint density with correlation coefficients of -0.84 and 0.63, respectively, had significant relationship with the population stability index of pear psylla. Considering the resuts of this study, it was found that different leaf characteristics, especially color and lint density, were highly effective on population density and stability indices of pear psyll. These characteristics can be used in pear breeding programs for selction and development of new resistant cutivars to pear psylla.
 
References
Behdad, E. 1991. Iran pests of fruit trees (2nd edition), Bahman Nashr Press, Esfahan, Iran, 826 pp. (in Persian).
Khalil, H., Raza, A. B. M., Afzal, M., Aqueel, M. A., Khalil, M. S. and Mansoor, M. M. 2017. Effects of plant morphology on the incidence of sucking insect pests complex in few genotypes of cotton. Journal of the Saudi Society of Agricultural Sciences, 16(4), pp.344-349. DOI: 10.1016/j.jssas.2015.11.003
Luo, X., Li, F., Ma, Y. and Cai, W. 2012. A revision of Chinese pear psyllids (Hemiptera: Psylloidea) associated with Pyrus ussuriensis. Zootaxa, 3489(1), pp.58-80. DOI: 10.11646/ZOOTAXA.3489.1.4
Rutledge, C. E., Robinson, A. P. and Eigenbrode, S. D. 2003. Effects of a simple plant morphological mutation on the arthropod community and the impacts of predators on a principal insect herbivore. Oecologia, 135, pp.39-50. DOI: 10.1007/s00442-002-1114-2
Steffan-Dewenter, I., Münzenberg, U. and Tscharntke, T. 2001. Pollination, seed set and seed predation on a landscape scale. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1477), pp.1685-1690. DOI: 10.1098/rspb.2001.1737
 

کلیدواژه‌ها [English]

  • Pear
  • adult insect
  • leaf surface area
  • lint density
  • esistance
Behdad, E. 1991. Iran pests of fruit trees (2nd edition), Bahman Nashr Press, Esfahan, Iran, 826 pp. (in Persian).
 
 
Bektas, Y. and Eulgem, T. 2015. Synthetic plant defense elicitors. Frontiers in Plant Science, 5, pp.1-17. DOI: 10.3389/fpls.2014.00804
 
 
Benedek, P., Szabó, T., Soltész, M., Szabó, Z. and Konrád-Németh, C. 2010. Susceptibility of European pear genotypes in a gene bank to pear psylla damage and possible exploitation of resistant varieties in organic farming. International Journal of Horticultural Science, 16(3), pp.95-101. DOI: 10.31421/IJHS/16/3/904
 
 
Branişte, N. and Militaru, M. 2008. Germplasm fund of Pyrus sp. Presently in ex situ Romanian collections. Acta Horticulturae 800(800), pp.497-501. DOI: 10.17660/ActaHortic.2008.800.63
 
 
Camerota, C., Raddadi, N., Pizzinat, A., Gonella, E., Crotti, E., Tedeschi, R., Mozes-Daube, N., Ember, I., Acs, Z., Kolber, M. and Zchori-Fein, E. 2012. Incidence of ‘Candidatus Liberibacter europaeus’ and phytoplasmas in Cacopsylla species (Hemiptera: Psyllidae) and their host/shelter plants. Phytoparasitica, 40, pp.213-221. DOI: 10.1007/s12600-012-0225-5
 
 
Casa, R., Castaldi, F., Pascucci, S. and Pignatti, S. 2015. Chlorophyll estimation in field crops: an assessment of handheld leaf meters and spectral reflectance measurements. The Journal of Agricultural Science, 153(5), pp.876-890. DOI: 10.1017/S0021859614000483
 
 
Cheng WeiNing, C. W., Wu JunXiang, W. J., Li XiuLian, L. X. and Li JianJun, L. J. 2006. Influence of chemicals and physical structure characteristics of host plant leaves on resistance to Liriomyza sativae Blanchard. Acta Scientiarum Naturalium Universitatis Sunyatseni, 45(5), pp.71-75. DOI:  10.5555/20063207494
 
 
Civolani, S., Grandi, G., Chicca, M., Pasqualini, E., Fano, E. A. and Musacchi, S. 2013. Probing behaviour of Cacopsylla pyri on a resistant pear selection. Journal of Applied Entomology, 137(5), pp.365-375. DOI: 10.1111/jen.12003
 
 
Danger, M., Bec, A., Spitz, J. and Perga, M. E. 2022. Questioning the roles of resources nutritional quality in ecology. Oikos, 2022(7), e09503.DOI: 10.1111/oik.09503
 
 
Easlon, H. M. and Bloom, A. J. 2014. Easy leaf area: automated digital image analysis for rapid and accurate measurement of leaf area. Applications In Plant Sciences, 2(7), p.1400033. DOI: 10.3732/apps.1400033
 
 
Ehteshami-Moinabadi, M. 2022. Properties of fault zones and their influences on rainfall-induced landslides, examples from Alborz and Zagros ranges. Environmental Earth Sciences, 81(5), 168. DOI: 10.1007/s12665-022-10283-2
 
 
Emami, M. S., Karimzadeh, J. and Shishehbor, P. 2017. Studies on the effect of pear variety on the population equilibrium level of pear psylla (Cacopsylla pyricola (Foerster)) in field. Plant Protection (Scientific Journal of Agriculture), 40(1), pp.97-106. DOI:10.22055/ppr.2017.16961.1219
 
 
Endara, M. J., Forrister, D. L. and Coley, P. D. 2023. The evolutionary ecology of plant chemical defenses: from molecules to communities. Annual Review of Ecology, Evolution, and Systematics, 54(1), pp.107-127. DOI: 10.1146/annurev-ecolsys-102221-045254
 
 
Fotirić Akšić, M. M., Dabić, D. C., Gašić, U. M., Zec, G. N., Vulić, T. B., Tešić, Z. L. and Natić, M. M. 2015. Polyphenolic profile of pear leaves with different resistance to pear psylla (Cacopsylla pyri). Journal of Agricultural and Food Chemistry, 63(34), pp.7476-7486. DOI: 10.1021/acs.jafc.5b03394
 
 
Friedman, J. M., Hunt Jr., E. R. and Mutters, R. G. 2016. Assessment of leaf color chart observations for estimating maize chlorophyll content by analysis of digital photographs. Agronomy Journal, 108(2), pp.1-8. DOI: 10.2134/agronj2015.0258
 
 
Gargallo-Garriga, A., Sardans, J., Granda, V., Llusià, J., Peguero, G., Asensio, D., Ogaya, R., Urbina, I., Van Langenhove, L., Verryckt, L.T. and Chave, J. 2020. Different “metabolomic niches” of the highly diverse tree species of the French Guiana rainforests. Scientific Reports, 10(1), 6937. DOI: 10.1038/s41598-020-63891-y
 
 
Khalil, H., Raza, A. B. M., Afzal, M., Aqueel, M. A., Khalil, M. S. and Mansoor, M. M. 2017. Effects of plant morphology on the incidence of sucking insect pests complex in few genotypes of cotton. Journal of the Saudi Society of Agricultural Sciences, 16(4), pp.344-349. DOI: 10.1016/j.jssas.2015.11.003
 
 
Kono, A., Ban, Y., Mitani, N., Fujii, H., Sato, S., Suzaki, K., Azuma, A., Onoue, N. and Sato, A. 2018. Development of SSR markers linked to QTL reducing leaf hair density and grapevine downy mildew resistance in Vitis vinifera. Molecular breeding, 38, pp.1-19. DOI: 10.1007/s11032-018-0889-8
 
 
Latifian, M., Atashkar, D. and Ghaemi, R. 2023. Relative establishment rate and host preference of wooly apple aphid Eriosoma lanigerum (Hausmann, 1802) (Hemiptera: Aphididae) on promising apple hybrid rootstocks. Journal of Entomological Society of Iran, 43(3), pp.233-245. DOI: 10.61186/JESI.43.3.4
 
 
Le Goff, G. J., Berthe, J., Tougeron, K., Dochy, B., Lebbe, O., Renoz, F. and Hance, T. 2021. Effect of the instar of the pear psyllid Cacopsylla pyri (Hemiptera: Psyllidae) on the behaviour and fitness of the parasitoid Trechnites insidiosus (Hymenoptera: Encyrtidae). European journal of entomology, 118, pp.279-287. DOI: 10.14411/eje.2021.028
 
 
Li, H., Futch, S. H. and Syvertsen, J. P. 2007. Cross‐correlation patterns of air and soil temperatures, rainfall and Diaprepes esistance root weevil in citrus. Pest Management Science, 63(11), pp.1116-1123. DOI: 10.1002/ps.1431
 
 
Loreau, M. and De Mazancourt, C. 2013. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecology letters, 16, pp.106-115. DOI: 10.1111/ele.12073
 
 
Luo, X., Li, F., Ma, Y. and Cai, W. 2012. A revision of Chinese pear psyllids (Hemiptera: Psylloidea) associated with Pyrus ussuriensis. Zootaxa, 3489(1), pp.58-80. DOI: 10.11646/ZOOTAXA.3489.1.4
 
 
Milla, R., Osborne, C. P., Turcotte, M. M. and Violle, C. 2015. Plant domestication through an ecological lens. Trends in ecology & evolution, 30(8), pp.463-469. DOI: 10.1016/j.tree.2015.06.006
 
 
Nin, S., Ferri, A., Sacchetti, P. and Giordani, E. 2012. Pear resistance to esist (Cacopsylla pyri L.): a review. Advances in Horticultural Science, 26(2), pp.59-74. DOI: 10.13128/ahs-12739
 
 
Pasqualini, E., Civolani, S., Musacchi, S., Ancarani, V., Dondini, L., Robert, P. and Baronio, P. 2006. Cacopsylla pyri behaviour on new pear selections for host resistance programs. Bulletin of Insectology, 59(1), pp.27-37.
 
 
Rutledge, C. E., Robinson, A. P. and Eigenbrode, S. D. 2003. Effects of a simple plant morphological mutation on the arthropod community and the impacts of predators on a principal insect herbivore. Oecologia, 135, pp.39-50. DOI: 10.1007/s00442-002-1114-2
 
 
Sanchez, J. A. and Ortín-Angulo, M. C. 2012. Abundance and population dynamics of Cacopsylla pyri (Hemiptera: Psyllidae) and its potential natural enemies in pear orchards in southern Spain. Crop Protection, 32, pp.24-29. DOI: 10.1016/j.cropro.2011.11.003
 
 
Schaub, L., Graf, B. and Butturini, A. 2005. Phenological model of pear psylla Cacopsylla pyri. Entomologia experimentalis et esistanc, 117(2), pp.105-111. DOI: 10.1111/j.1570-7458.2005.00339.x
 
 
Steffan-Dewenter, I., Münzenberg, U. and Tscharntke, T. 2001. Pollination, seed set and seed predation on a landscape scale. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1477), pp.1685-1690. DOI: 10.1098/rspb.2001.1737
 
 
Stratopoulou, E. T. and Kapatos, E. T. 1995. The dynamics of the adult population of pear psylla, Cacopsylla pyri L. (Hom., Psyllidae) in the region of Magnesia (Greece). Journal of Applied Entomology, 119(1‐5), pp.97-101. DOI: 10.1111/j.1439-0418.1995.tb01251.x
 
 
Sueyoshi, M., Tojo, K., Ishiyama, N. and Nakamura, F. 2023. Population stability and asymmetric migration of caddisfly populations, Stenopsyche marmorata (Stenopsychidae), in a forest–agriculture landscape. Aquatic Sciences, 85(4), 98. DOI: 10.1007/s00027-023-00992-6
 
 
Ullman, D. E. and McLean, D. L. 1988. Feeding behavior of the winter-form pear psylla, Psylla pyricola (Homoptera: Psyllidae), on reproductive and transitory host plants. Environmental entomology, 17(4), pp.675-678. DOI: 10.1093/ee/17.4.675
 
 
Walker, T. W., Alexander, J. M., Allard, P. M., Baines, O., Baldy, V., Bardgett, R. D., Capdevila, P., Coley, P. D., David, B., Defossez, E. and Endara, M. J. 2022. Functional Traits 2.0: The power of the metabolome for ecology. Journal of Ecology, 110(1), pp.4-20. DOI: 10.1111/1365-2745.13826
 
 
Wei, J., Zou, L., Kuang, R. and He, L. 2000. Influence of leaf tissue structure on host feeding selection by pea leafminer Liriomyza huidobrensis (Diptera: Agromyzidae). Zooligical Studies-Tapei, 39(4), pp.295-300. DOI: 10.3989/collectbot.2015.v34.005
 
 
Wei, M., Chi, H., Guo, Y., Li, X., Zhao, L. and Ma, R. 2020. Demography of Cacopsylla chinensis (Hemiptera: Psyllidae) reared on four cultivars of Pyrus bretschneideri (Rosales: Rosaceae) and P. communis pears with estimations of confidence intervals of specific life table statistics. Journal of Economic Entomology, 113(5), pp.2343-2353. DOI: 10.1093/jee/toaa149
 
 
Whitehead, S. R., Turcotte, M. M. and Poveda, K. 2017. Domestication impacts on plant–herbivore interactions: a meta-analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1712), 20160034. DOI: 10.1098/rstb.2016.0034
 
 
Xu, S. J., Wu, L., Liu, Q. Z., Liu, J., Wang, H., Wang, J. W. and Zhang, T. 2019. Correlation between population size of pear psylla (Cacopsylla chinensis) and leaf structure features in different pear cultivars. Journal of Asia-Pacific Entomology, 22(2), pp.531-536. DOI: 10.1016/j.aspen.2019.03.011
 
 
Yamamoto, T. and Terakami, S. 2016. Genomics of pear and other Rosaceae fruit trees. Breeding science, 66(1), pp.148-159. DOI: 10.1270/jsbbs.66.148