ارزیابی مقدماتی تحمل به تنش شوری در برخی از ارقام بومی و پایه‌های هیبرید انگور در شرایط درون شیشه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد، دانشکده کشاورزی و منابع طبیعی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران.

2 مربی، پژوهشکده میوه‌های معتدله و سردسیری، موسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

3 دانشیار، پژوهشکده میوه‌های معتدله و سردسیری، موسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

4 استاد، دانشکده کشاورزی و منابع طبیعی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران.

5 دانشجوی دکتری، پژوهشکده میوه‌های معتدله و سردسیری، موسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

6 استادیار، پژوهشکده میوه‌های معتدله و سردسیری، موسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

چکیده

با توجه به گستره کشت انگور در مناطق خشک دنیا، تنش شوری یکی از تنش­های محیطی مهم در رابطه با کشت این محصول است که تولید آن را در ایران نیز محدود می کند. بنابراین، این پژوهش با هدف ارزیابی مقدماتی و مقایسه واکنش سه رقم محلی انگور بیدانه سفید، بیدانه قرمز، شاهرودی و سه پایه هیبرید H4، H6 و Kober5BB در پاسخ به تنش شوری به صورت آزمایش فاکتوریل و در قالب طرح کاملاً تصادفی با پنج تکرار در شرایط درون شیشه­ای در پژوهشکده میوه ­های معتدله و سردسیری، موسسه تحقیقات علوم باغبانی، کرج، در سال 1394 تا 1396 انجام شد. ارزیابی اثر شوری (کلرور سدیم) به منظور تعیین متحمل­ ترین رقم یا پایه در چهار غلظت صفر (شاهد)، 25، 50 و 75 میلی­ مولار انجام شد. تجزیه واریانس داده ها نشان داد که اثر سطوح شوری بر ژنوتیپ ­های مورد بررسی بر کلیه صفات رویشی از جمله رشد طولی شاخه­ چه­ های درون شیشه، تعداد برگ به ازای شاخه­ چه و توسعه برگ معنی دار بود. اغلب این خصوصیات در سطح تنش ملایم نمک، تا 25 میلی­مولار، افزایش و در غلظت­ های 50 و 75 میلی مولار که غلظت­ های تعیین ­کننده برای بافت ­های گیاهی برای تحمل به تنش شوری می­ باشند، کاهش نشان داد. بر اساس این خصوصیات، پایه هیبرید H6 و رقم شاهرودی دارای برتری نسبی بودند که ارزیابی میزان کلروفیل کل برگ و حفظ آن تا حدود دو و 0/5میلی­ گرم به ازای هر گرم برگ، به ترتیب در پایه هیبرید H6 و رقم شاهرودی، موید خصوصیات رشدی مورد ارزیابی بود. ارزیابی میزان پروتئین کل و پرولین کل برگ نشان داد که میزان پروتئین کل در همه ارقام و پایه­ ها با افزایش شدت تنش شوری روند صعودی داشت. لیکن میزان پرولین کل، ارتباط مناسبی با تحمل بالاتر پایه هیبرید H6 و رقم شاهرودی به تنش شوری کلرور سدیم در غلظت 75 میلی­ مولار نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

Preliminary Evaluation of Salinity Stress Tolerance in Some Grapevine Native Cultivars and Hybrid Rootstocks under in Vitro Conditions

نویسندگان [English]

  • M. Farjad 1
  • A. Nankali 2
  • H. Abdollahi 3
  • M. Khosroshahli 4
  • A. Rezaei 5
  • V. Rasouli 6
1 Former M. Sc. Student, Faculty of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 Researcher, Temperate Fruits Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.
3 Associate Professor, Temperate Fruits Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.
4 Professor, Faculty of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, Tehran, Iran.
5 Ph. D. Student, Temperate Fruits Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.
6 Assistant Professor, Temperate Fruits Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.
چکیده [English]

Considering the extent of grapevine cultivation in arid and semi-arid areas of the world where salinity stress is one of the important environmental stresses that limits grape production in Iran. Therefore, this research was carried out for preliminary evaluation and comparison of the reaction of three grapevine native cutivars; Bidaneh Sefid, Bidaneh Ghermez, Shahroudi and three hybrids H4, H6 and Kober5BB rootstocks in response to salinity stress in Temperate Fruits Research Center, Horticultural Sciences Research Institute, in Karaj, Iran, in 2015 -2017. The experiments were conducted as factorial arrangements in completely randomized design with five replications under in vitro conditions. The effect of salt was evaluated to identify the most tolerant cultivar/rootstock at four concentration levels of sodium chloride (NaCl); 0 (control), 25, 50 and 75 mM. The results showed significant effect of different salt levels on grapevine cultivars/rootstocks for all vegetative traits including; length of shootlets, number of leaves shootlet-1 and leaf expansion. Most of these traits increased at mild salt stress up to 25 mM. However, at 50 and 75 mM, which are decisive concentrations for tolerance of plant tissues to salinity, the traits showed significant decreases. According to the vegetative growth charcteristics, H6 hybrid rootstock and cv. Shahroudi had relative tolerance to the salinity stress that was confirmed by high preservation of their chlorophyll content, as observed about 2 mg g-1 FW in H6 hybrid rootstock. The total protein and proline contents of leaves showed that the total protein content in all grapevine cultivars and rootstocks followed increasing trend with stress intensity. The proline content had an appropriate association with the higher tolerance level of H6 hybrid rootstock and cv. Shahroudi to 75 mM of sodium chloride.  
 
Key words: Grapevine, Tissue culture, Sodium chloride, Total protein content, Total proline content.
 
Introduction
Salinity, as one of the abiotic stresses, affects the growth and production of agricultural crops by reducing the osmotic potential and creating osmotic stress, ion toxicity and nutritional imbalance in many regions of the world (Mahajan and Tuteja, 2005). Statistics show that about 1.13 billion hectares of crop plants are affected by salinity-alkaline stress worldwide, which includes about 20% of the total cultivated area in the world (Morton et al., 2019). Grape is known as one of the horticultural crops with high economic value in the world, and its ecological scope for development is very wide. According to the Food and Agriculture Organization of United Nation (FAO), the grape production in 2020 was 78 million tons. The cultivated areas and grape production in Iran are about 230 thousand hectares and 2.5 million tons, respectively, and stands 10th in ranking ladder in the world (FAO, 2020). The majority of grapevine cultivation is in arid or semi-arid areas where soil salinity and alkalization is a matter of serious concern due mainly to low rainfall and high evaporation, though different grapevine cultivars are relatively tolerant to salinity stress environments. This research was carried out with the aim of preliminary evaluation of the morphological characteristics and biochemical attributes contributing to resistance to salt stress of local cultivars and imported and rootstocks of grapevine under in vitro conditions.
 
Materials and Methods
Cultivars and rootstocks used in this research included three Iranian local grapevine cultivars; Shahroudi, Bidaneh Sefid and Bidaneh Ghermez and three rootstocks; two Iranian hybrid rootstocks, H4 (V. vinifera cv. Jighjigha × V. riparia cv. Gloire), H6 (V. vinifera cv. Gharaozum × Kober5BB), and one imported rootstock, Kober5BB (V. berlandieri × V. riparia). Applied salinity treatments were at four levels of sodium chloride; 0 (control), 25, 50 and 75 mM. Modified MS culture medium (Murashige and Skoog, 1962) enriched with 0.5 mg l-1 BAP was used to cultivate and establish explants. The experiment was conducted as factorial arrangements in completely randomized design with five replications. The most important traits that were evaluated included; shoot length, number of leaves, leaf area, proline and protein contents. Analysis of variance was performed using SAS software, and Duncan’s Multiple Range Test was used for mean comparisons at the 5% probability level. Graphs were made using Microsoft Excel
 
Results and Discussion
The tallest shootlet length was measured in the non-salinity stress conditions in cv. Bidaneh Sefid, cv. Shahroudi and H6 rootstock, respectively. Also, H4 and Kober5BB rootstocks had lower growth in non-stressed conditions compared with other cultivars and rootstocks. Mean comparison for the effect of salinity stress on morphological trait of leaf number at different levels of salinity stress; 0, 25, 50 and 75 mM, similarly showed that, in the absence of salinity stress, the number of developed leaves shootlet-1 varied from 7 to 12 leaves in H4 and H6 hybrid rootstocks, respectively.
The results of mean comparison for the effects of different salinity stress levels on leaf development showed that at 0 mM salinity level (control), a significant difference was observed between leaf expansion of cultivars and rootstocks. Normlly, leaf expansion under in vitro conditions is a function of the adaptability of genotype to tissue culture conditions as well as the type and level of growth regulators, the mode of use, and their interaction with internal plant hormones (Mansouryar et al., 2016). Mean comparison showed that with increases in salinity stress levels, the total chlorophyll content decreased in all studied cultivars and rootstocks. According to the results, at 75 mM salt stress in the culture medium, H6 hybrid rootstock, cv. Shahroudi, cv. Bidaneh Sefid and cv. Bidaneh Ghermez, Kober5BB rootstock as well as H4 hybrid rootstocks have the highest total chlorophyll content.
In general, the results of this research showed that the in vitro evaluation on grapevine cultivars and rootstocks by increasing the level of sodium chloride (NaCl) with concentrations higher than 50 mM, which in this research 75 mM, as appropriate approach for preliminary evaluation and screening of cultivars and rootstocks for tolerance to salt stress. Threfore, it is necessary to examine several growth characteristics including; length of shootlets grown in in vitro, leaf expansion and number of leaves, over time after application of salt stress treatments. Biochemical characteristics, especially the rate of decay and reduction of total chlorophyll, should also be used as useful attribute for screening and selection of tolerant grapevine cultivars and rootstocks to salinity stress. Therefore, in the further researches, it is necessary to confirm these findings, in pot and orchard, conducting experiments in saline soil conditions.

References
FAO. 2020. Statistics Yearbook. World Food and Agriculture. Food and Agricultural Organization. Rome, Italy. 351 pp.
Mahajan, S. and Tuteja, N. 2005. Cold, salinity and drought stresses: An Overview. Archives of Biophysics, 444, pp.139-158. DOI: 10.1016/j.abb.2005.10.018.
Mansouryar, M., Erfani-Moghadam, J., Abdollahi, H. and Salami, S. A. 2016. Optimization of in vitro micropropagation protocol for some vigorous rootstocks of pear. Iranian Journal of Horticultural Science, 47, pp.361-370. DOI: 10.22059/ijhs.2016.58537. (In Persian).
Morton, M.J., Awlia, M., Al Tamimi, N., Saade, S., Pailles, Y., Negrão, S. and Tester, M. 2019. Salt stress under the scalpel–dissecting the genetics of salt tolerance. The Plant Journal, 97, pp.148-163. DOI: 10.1111/tpj.14189.
 
 
 

Alizadeh, M., Singh, S.K. Patel, V.B., Bhattacharya, R.C., and Yadav, B.P. 2010. In vitro responses of grape rootstocks to NaCl. Biologia Plantarum, 54, pp.381-385. DOI: 10.1007/s10535-010-0069-0.
 
 
Anonymous. 2019. National Salinity Research Center. http://www.insrc.org.
 
 
Bates, L.S., Waldren, R.P. and Teare, I.D. 1973. Rapid determination of free proline for water stress studies. Plant and Soil 39: 205-207. DOI: 10.1007/BF00018060.
 
 
Bazgeer, S., Behrouzi, M., Nouri, H., Nejatian, M.A. and Akhzari, D. 2022. Effect of dust on growth and reproductive characteristics of grapevine (Vitis vinifera). International Journal of Horticultural Science & Technology, 9, pp.301-313. DOI: 10.22059/ijhst.2021.320693.448.
 
 
Bradford, M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, pp.248-254. DOI: 10.1006/abio.1976.9999.
 
 
Chaves, M.M., Flexas, J. and Pinheiro, C. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103, pp.557-560. DOI: 10.1093/aob/mcn125.
 
 
Doulati Baneh, H., Hassani, A. and Ghani Shaieste, F. 2014. Effects of salinity on leaf mineral composition and salt injury symptoms of some Iranian wild grapevine (Vitis vinifera L. ssp. sylvestris) genotypes. Journal International des Sciences de la Vigne et du Vin, 48, pp.231-235. DOI: 10.20870/oeno-one.2014.48.4.1692.
 
 
FAO. 2020. Statistics Yearbook. World Food and Agriculture. Food and Agricultural Organization. Rome, Italy. 351 pp.
 
 
Fisarakis, I., Chartzoulakis, K. and Stavrakas, D. 2001. Response of Sultana vines (V. vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agricultural Water Management, 51, pp.13-27. DOI: 10.1016/S0378-3774(01)00115-9.
 
 
Heydari Sharifabad, H. 2001. Salinity and plant. Forests and Rangelands Research Institute Publication. Tehran, Iran. 200 pp. (In Persian).
 
 
Homaei, M. 2002. Plant responses to salinity. Publication of National Comitee of Irrigation and Drainage of Iran. Karaj, Iran. 97 pp. (In Persian).
 
 
Inskeep, W.P. and Bloom, P.R. 1985. Extinction coefficients of chlorophyll a and b in n,n-dimethylformamide and 80% acetone. Plant Physiology, 77, pp.483-485. DOI: 10.1104/pp.77.2.483.
 
 
Jamshidi Goharrizi, K, Amirmahani, F. and Salehi, F. 2020. Assessment of changes in physiological and biochemical traits in four pistachio rootstocks under drought, salinity and drought + salinity stresses. Physiologia Plantarum, 168, pp.973-989. DOI: 10.1111/ppl.13042.
 
 
Kozlowski, T.T. 1997. Responses of woody plants to flooding and salinity. Tree Physiology, 17, 490. DOI: 10.1093/treephys/17.7.490.
 
 
Lu, X., Ma, L., Zhang, C., Yan, H., Bao, J., Gong, M., Wang, W., Li, S., Ma, S. and Chen, B. 2022. Grapevine (Vitis vinifera) responses to salt stress and alkali stress: transcriptional and metabolic profiling. BMC Plant Biology, 22, 528 DOI: 10.1186/s12870-022-03907-z.
 
Mahajan, S. and Tuteja, N. 2005. Cold, salinity and drought stresses: An Overview. Archives of Biophysics, 444, pp.139-158. DOI: 10.1016/j.abb.2005.10.018.
 
 
Mansouryar, M., Erfani-Moghadam, J., Abdollahi, H. and Salami, S. A. 2016. Optimization of in vitro micropropagation protocol for some vigorous rootstocks of pear. Iranian Journal of Horticultural Science, 47, pp.361-370. DOI: 10.22059/ijhs.2016.58537. (In Persian).
 
 
Morton, M.J., Awlia, M., Al Tamimi, N., Saade, S., Pailles, Y., Negrão, S. and Tester, M. 2019. Salt stress under the scalpel–dissecting the genetics of salt tolerance. The Plant Journal, 97, pp.148-163. DOI: 10.1111/tpj.14189.
 
 
Munns, R. and Tester, M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, pp.51-81. DOI: 10.1146/annurev.arplant.59.032607.092911.
Munns, R., James R. and Lauchli A. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experiment Botany, 57, pp.1025-1043. DOI: 10.1093/jxb/erj100.
 
 
Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, pp.473-497. DOI: 10.1111/j.1399-3054.1962.tb08052.x.
 
 
Parida, A.K. and Das, A.B. 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 60, pp.324-349. DOI: 10.1016/j.ecoenv.2004.06.010.
 
 
Reisch, B.I., Owens, C. L., and Cousins, P. S. 2012. Grape. pp. 225–262. In: Badenes, M. L. and Byrne, D. H. (eds.), Fruit Breeding. Springer, USA.
 
 
Sivritepe, N. and Eris, A. 1999. Determination of salt tolerance in some grapevine cultivars (Vitis vinifera L.) under in vitro conditions. Turkish Journal of Biology, 23, pp.473-485.
Song. J., Ding, X., Feng, G. and Zhang, F. 2006. Nutritional and osmotic roles of nitrate in a euhalophyte and axerophyte in saline condition. New Phytologist, 111, pp.357-366. DOI: 10.1111/j.1469-8137.2006.01748.x.
 
 
Walker, R.R., Torokfalvy, E., Scott, N.S. and Kriedemann, P.E. 1981. An analysis of photosynthetic response to salt treatment in Vitis vinifera. Australian Journal of plant physiology, 8, pp.359-374. DOI: 10.1071/PP9810359.
 
 
Wang, K., Yanxiang, L., Dong, K., Dong, J., Kang, J., Yang, Q., Zhou H., and Sun. Y., 2011. The effect of NaCl on proline metabolism in saussurea amara seedings. African Journal of Biotechnology, 10, pp.2886-2893. DOI: 10.5897/AJB10.2269.
 
 
Wang, Z., Tan, W., Yang, D., Zhang, K., Zhao, L., Xie, Z., Xu, T., Zhao, Y., Wang, X., Pan, X. and Zhang, D. 2021. Mitigation of soil salinization and alkalization by bacterium-induced inhibition of evaporation and salt crystallization. The Science of The Total Environment, 755, pp.142511. DOI: 10.1016/j.scitotenv.2020.142511.
 
 
Zhu. J. K. 2000. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiology 124:941-948. DOI: 10.1104/pp.124.3.941.
 
 
Zohouri, M., Abdollahi, H., Arji, I. and Abdossi, V. 2020. Variations in growth and photosynthetic parameters of some clonal semi-dwarfing and vigorous seedling pear (Pyrus spp.) rootstocks in response to deficit irrigation. Acta Scientiarum Polonorum. Hortorum Cultus, 19, pp.105–121. DOI: 10.24326/asphc.2020.2.11.