شناسایی آلل‌های خودناسازگاری در برخی ارقام و ژنوتیپ‌های آلو ژاپنی (Prunus salicina Lindl.) با استفاده واکنش زنجیره ای پلی‌مراز

نوع مقاله : مقاله پژوهشی

نویسنده

پژوهشکده میوه های معتدله و سردسیری، موسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

چکیده

آلوها در بین مهمترین درختان میوه در جهان قرار دارند. آلوهای ژاپنی دیپلوئید و اغلب ارقام خودناسازگارند. شناسایی آلل‌های خودناسازگاری برای گسترش این محصول و دورگ گیری ضروری است. در این تحقیق آلل‌های خودناسازگاری 14 ژنوتیپ آلوی ژاپنی با استفاده از واکنش زنجیره ای پلی مراز (PCR) و گرده افشانی کنترل شده، شناسایی شد. با به کار بردن هفت جفت آغازگر مکان ژن‌های S-Rnase و SFB تنوع بالایی در آلل‌های ناسازگاری مشاهده شد. هیجده باند با اندازه‌های 215 تا 1734 جفت باز با جفت آغازگرهای EMPC2consFD وEMPC3consRD تکثیرگردید. با مقایسه اندازه باندهای بدست آمده با اندازه آلل‌های S موجود در NCBI، تعداد پنج باند با اندازه‌های جدید مشاهده شد که پس از توالی‌یابی می‌توانند کاندیدای آلل جدید باشند. ارقام آلو سنقر آبادی، شماره 16 و واعظی دارای آلل Sb بودند که عامل خودسازگاری است و با خودگرده افشانی، واعظی، سنقرآبادی و شماره 16به ترتیب 79/0، 21/0 و 32/0 درصد خودباروری داشتند. نتایج خودگرده افشانی نشان داد که اغلب ارقام و ژنوتیپ‌های مورد بررسی خودناسازگار بودند، اما رقم سیمکا با 9/2 درصد خودباروری نیمه خود(نا)سازگار بود. بیشترین میانگین آلل تکثیر شده در آغازگرها مربوط به ارقام لارودا و بلک آمبر و کمترین آلل تکثیر شده مربوط به ارقام شایرو و قطره طلا بود. بر اساس نتایج این پژوهش روش‌های مولکولی در ترکیب با روش‌های باغی در شناسایی آل های ناسازگاری بسیارکارآمد هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Resistance to Leaf Rust (Puccinia tritic Eriks.) at Seedling Stage in Wheat Genotypes

نویسنده [English]

  • M. Pirkhezri
Temperate Fruit Research Center, Horticultural Science Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.
چکیده [English]

Leaf rust caused by Puccinia triticina Eriks. is the most widespread and regularly occurring rust on wheat. Genetic resistance is the most economical approach of preventing yield losses due to leaf rust. To evaluate the resistance of 320 wheat genotypes at seedling stage to four leaf rust isolates, an experiment was carried out using randomized complete block design with two replications in the greenhouse conditions of the cereal pathology unit of Seed and Plant Improvement Institute in Karaj, Iran. To evaluate the resistance, two components of infection type and latent period, were used. Analysis of variance showed that there was highly significant differences between the genotypes for each of the two components. Dehdasht, Dena, Karaj-2, Khazar-1, Sepahan and Parsi and seven landraces were resistant to all isolates at seedling stage. The correlation between infection type and the latent period was negative and significant. Cluster analysis classified the genotypes into three clusters: susceptible, moderately susceptible to moderately resistant, and resistant to immune. More than 78 percent of the genotypes were in susceptible cluster. Identified resistant genotypes, especially landraces, can be used as sources of resistance to leaf rust in wheat breeding programs.

کلیدواژه‌ها [English]

  • Wheat
  • latent period
  • infection type
  • seedling resistance
  • cluster analysis
Abdallah, D., Baraket, G., Perez, V., Mustapha, S. B., Salhi-Hannachi, A., and Hormaza, J. I. 2019. Analysis of self-incompatibility and genetic diversity in diploid and hexaploid plum genotypes. Front Plant Science 10: 896.
 
Beppu, K., Takemoto, Y., Yamane, H., Yaegaki, H., Yamaguchi, M., Kataoka, I., and Tao, R. 2003. Determination of S-haplotypes of Japanese plum (Prunus salicina Lindl.) cultivars by PCR and cross-pollination tests. Journal of Horticultural Science and Biotechnology 78: 315–318.
 
Crane, M. B., and Lewis, D. 1942. Genetic studies in pears. III. Incompatibility and sterility. Journal of Genetics 43: 31-44.
 
Feng, J., Chen, X., Wu, Y., Liu, W., Liang, Q., and Zhang, L. 2006. Detection and transcript expression of S-RNase gene associated with self-incompatibility in apricot (Prunus armeniaca L.). Molecular Biology Reports 33: 215-221.
 
Ganji Moghaddama, E., Hossein Ava, S., Akhavan, S., and Hosseini, S. 2010. Phenological and pomological characteristics of some plum (Prunus spp.) cultivars grown in Mashhad, Iran. Crop Breeding Journal 1 (2): 105-108.
 
Gu, Q., Zhang, Q., Hu, H., Chen, Q., and Luo, Z. 2009. Identification of self-incompatibility genotypes in some sand pears (Pyrus pyrifolia Nakai.) by PCR-RFLP analysis. Agricultural Sciences in China 8: 154-160.
 
Guerra, M. E., Rodrigo, J., Lopez- Corrales, M., and Wunsch, A. 2009. S-RNase genotyping and incompatibility group assignment by PCR and pollination experiments in Japanese plum. Plant Breeding 128: 304-311.
 
Guerra, M. E., Wunsch, A., Lopez-Corrales, M., and Rodrigo, J. 2011. Lack of fruit set caused by ovule degeneration in Japanese plum. Journal of the American Society for Horticultural Science 136 (6): 375–381.
 
Halasz, J., Fodor, A., Hegedus, A., and Pedryc, A. 2008. Identification of a new self-incompatibility allele (S31) in a Hungarian almond cultivar and its reliable detection. Scientia Horticulturae 116: 448–451.
 
Hegedus, A., and Halasz, J. 2006. Self-incompatibility in plums (Prunus salicina Lindl., Prunus cerasifera Ehrh. and Prunus domestica L.). International Journal of Horticultural Science 12: 137–140.
 
Hiratsuka, S., and Zhang, S. L. 2002. Cultivar differences in the expression of self-incompatibility in Japanese pears. Acta Horticulturae 587: 437-448.
 
Ishimizu, T., Inoue, K., Shimonaka, M., Saito, T., Terai, O., and Norioka, S. 1999. PCR-based method for identifying the S genotypes of Japanese pear cultivars. Theoretical and Applied Genetics 98: 961-967.
 
Lopez, M., Vargas, F. J., and Batlle, I. 2006. Self-incompatibility in almond genotypes: a review. Euphytica 150: 1-16.
 
Murfett, J., Cornish, E. C., Ebert, P. R., Bonig, I., Mcclure, B. A., and Clarke, A. E. 1992. Expression of a self-incompatibility glycoprotein (S2-Ribonuclease) from Nicotiana alata in transgenic Nicotiana tabacum. Plant Cell 9: 1063-1074.
 
Murray, H. G., and Thompson, W. F. 1980. Rapid isolation of high molecular weight DNA. Nucleic Acids Research 8: 4321-4325.
 
Ortega, E., Sutherland, B. G., Dicenta, F., Boskovic, R., and Tobutt, K. R. 2005. Determination of incompatibility genotypes in almond using first and second intron consensus primers: detection of new S-alleles and correction of reported S genotypes. Plant Breeding 124: 188–196.
 
Pirkhezri, M. 2019. S-genotyping of some greengage cultivars and genotypes in Iran (Prunus cerasifera Ehrh.) by PCR. pp. 1-5 In: Proceedings of the11th National Horticultural Science Congress of Iran. (in Persian).
 
Rahemi, A., Fatahi, R., Ebadi, A., Taghavi, T., Hassani, D., Gradziel, T., and Saparro, J. 2010. Genetic variation of S-alleles in wild almonds and their related Prunus species. Agriculture Journal of Crop Science 4 (8): 648-659.
 
Ruck, H. C. 1975. Deciduous fruit tree cultivars for tropical and subtropical regions. Horticultural Reviews 3: 84-172.
 
Sapir, G., Raphael, A. S., Shafir, S. H., and Goldway, M. 2008. S-RNase based S-genotyping of Japanese plum (Prunus salicina Lindl.) and its implication on the assortment of cultivar-couples in the orchard. Scientia Horticulturae 118: 8-13.
 
Saure, M. C. 1985. Dormancy release in deciduous fruit trees. Horticultural Review 7: 239-287.
 
Sutherland, B. G., Robbins, T. P., Tobutt, K. R. 2004. Primers amplifying a range of Prunus S-alleles. Plant Breeding 123: 582–584.
 
Szabo, Z. 2003. Plum (Prunus domestica L.). pp. 515–522. In: Kozma, P., Nyeki, J., Soltesz, M., Szabo, Z. (eds.): Floral biology, pollination and fertilization in temperate zone fruit species and grape. Akademiai Kiado, Budapest.
 
Ushijima, K., Sassa, H., Tao, R., Yamane, H., Dandekar, A. M., Gradziel, T. M., and Hirano, H. 1998. Cloning and characterization of cDNAs encoding S-RNases from almond (Prunus dulcis): primary structural features and sequence diversity of the S-RNases in Rosaceae. Molecular and General Genetics 260: 261–268.
 
Ushijima, K. H., Yamane, A., Watari, E., and Kakehi, K. 2004. The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P. mume. Plant Journal 39: 573–586.
 
Verma, L. R., and Jindal, K. K. 1997. Fruit crop pollination. Kalyani Publication, Ludhiana, India. 405 pp.
 
Vilanova, S., Badenes, M. L., Burgos, L., Martınez-Calvo, J., Llacer, G., and Romero, C. 2006. Self-compatibility of two apricot selections is associated with two pollen-part mutations of different nature. Plant Physiology 14: 629– 641.
 
Wang, H., Zhang, K., Su, H., and Naihaoye, K. 2010. Identification of the S-genotypes of several sweet cherry (Prunus avium L.) cultivars by AS-PCR and pollination. African Journal of Agricultural Research 5: 250-256.
 
Yamane, H., Tao, R., and Sugiura, A. 1999. Identification and cDNA cloning for S-RNases in self-incompatible Japanese plum (Prunus salicina Lindl. cv. Sordum). Plant Biotechnology 16: 389-396.
 
Zhang, S. J., Huang, S. X., Heng, W., Wu, H. Q., and Zhang, S. L. 2008. Identification of S-genotypes in 17 Chinese cultivars of Japanese plum (Prunus salicina Lindl.) and molecular characterization of 13 novel S-alleles. Journal of Horticultural Science and Biotechnology 83: 635–640