ارزیابی مقاومت به زنگ قهوه‌ای(Puccinia tritici Eriks.) در مرحله گیاهچه‌ای در ژنوتیپ‌های گندم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران.

2 موسسه تحقیقات اصلاح و تهیه و نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

3 گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران.

چکیده

بیماری زنگ قهوه‌ای گندم با عامل Eriks Puccinia triticina ازلحاظ وسعت پراکندگی و میزان خسارت مهمترین بیماری گندم می‌باشد. استفاده از ارقام مقاوم مؤثرترین روش برای کنترل این بیماری می‌باشد. به‌منظور بررسی مقاومت گیاهچه‌ای 320 ژنوتیپ گندم شامل ارقام اصلاح شد و ژنوتیپ ها بومی، آزمایشی در قالب طرح بلوک‌های کامل تصادفی با دو تکرار با چهار پاتوتیپ زنگ قهوه‌ای در شرایط گلخانه‌ای واحد بیماری‌شناسی غلات موسسه اصلاح و تهیه نهال و بذر کرج در سال 1399 انجام شد. جهت بررسی مقاومت از دو جزء تیپ آلودگی و دوره نهان استفاده شد. نتایج تجزیه واریانس داده ها نشان داد که بین ژنوتیپ‌ها برای هر دو جزء تفاوت بسیار معنی‌داری در سطح احتمال یک درصد وجود داشت. در میان ژنوتیپ‌ها، ارقام دهدشت، دنا، کرج 2، خزر 1، سپاهان و پارسی و هفت ژنوتیپ بومی نسبت به تمام پاتوتیپ‌ها در مرحله گیاهچه‌ای مقاوم بودند. همبستگی دو جزء تیپ آلودگی و دوره نهان منفی و معنی‌دار بود. بر اساس نتایج تجزیه خوشه‌ای ژنوتیپ‌های مورد مطالعه در سه گروه حساس، نیمه‌حساس تا نیمه‌مقاوم و مقاوم تا مصون طبقه‌بندی شدند. بیش از 78 درصد از ژنوتیپ‌ها در گروه حساس جای گرفتند. ژنوتیپ‌های مقاوم شناسایی‌شده، مخصوصاً ژنوتیپ های بومی، می‌توانند به‌عنوان منابع مقاومت به زنگ قهوه ای در برنامه‌های به نژادی گندم نان استفاده شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Resistance to Leaf Rust (Puccinia tritic Eriks.) at Seedling Stage in Wheat Genotypes

نویسندگان [English]

  • S. Delfan 1
  • M.R. Bihamta 1
  • S. T. Dadrezaei 2
  • A. R. Abbasi 1
  • H. Alipour 3
1 Faculty of Agriculture, Agricultural and Natural Resources Campus, University of Tehran, Karaj, Iran.
2 Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.
3 Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran.
چکیده [English]

Leaf rust caused by Puccinia triticina Eriks. is the most widespread and regularly occurring rust on wheat. Genetic resistance is the most economical approach of preventing yield losses due to leaf rust. To evaluate the resistance of 320 wheat genotypes at seedling stage to four leaf rust isolates, an experiment was carried out using randomized complete block design with two replications in the greenhouse conditions of the cereal pathology unit of Seed and Plant Improvement Institute in Karaj, Iran. To evaluate the resistance, two components of infection type and latent period, were used. Analysis of variance showed that there was highly significant differences between the genotypes for each of the two components. Dehdasht, Dena, Karaj-2, Khazar-1, Sepahan and Parsi and seven landraces were resistant to all isolates at seedling stage. The correlation between infection type and the latent period was negative and significant. Cluster analysis classified the genotypes into three clusters: susceptible, moderately susceptible to moderately resistant, and resistant to immune. More than 78 percent of the genotypes were in susceptible cluster. Identified resistant genotypes, especially landraces, can be used as sources of resistance to leaf rust in wheat breeding programs.

کلیدواژه‌ها [English]

  • Wheat
  • latent period
  • infection type
  • seedling resistance
  • cluster analysis
Alexopoulos, C. J., Mims, C. W., and Blackwell, M. M. 1996. Introductory mycology. 4th edition. John Wiley and Sons, New York, USA. 880 pp.
 
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. 1998. Crop evapotranspiration (guidelines for computing crop water requirements). FAO Irrigation and Drainage Paper No. 56. Rome, Italy. 327 pp.
 
Bakhshi, T., Bozorgipour, R., Afshari, F., and Kaviani, B. 2012. Evaluation of resistance of some wheat doubled haploid lines to virulence pathotype, the causal agent of wheat leaf rust. European Journal of Experimental Biology 2: 1486-1491.
 
Bihamta. M. R., Ebrahimi. A., and Dashtaki. M. 2013. Genetic analysis of inheritance of resistance in some wheat cultivars to 134E134A+, 174E174A+ races of stripe rust. Iranian Journal of Field Crops Research 11 (2): 316-326.
 
Bonman, J. M., Bockelman, H. E., Jin, Y., Hijmans, R. J., and Gironella A. I. N. 2007. Geographic distribution of stem rust resistance in wheat landraces. Crop Science 47: 1955-63.
 
Bux, H., Ashraf, M., and Chen, X. 2012. Expression of high-temperature adult-plant (HTAP) resistance against stripe rust (Puccinia striiformis f. sp. tritici) in Pakistan wheat landraces. Canadian Journal of Plant Pathology 34: 68–74.
 
Chen, X. M. 2005. Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Canadian Journal of Plant Pathology 27: 314–337.
 
Dadrezaie, S. T., Afshari, F., and Patpour, M. 2015. Evaluation of phenotypic resistance to rusts in some Iranian wheat genotypes in greenhouse and field conditions. Seed and Plant Improvement Journal 1 (31): 531-546 (in Persian).
 
De Jesus, W. C., do Vale, F. X. R., Coelho, R. R., and Costa, L. C. 2001. Comparison of two methods for estimating leaf area index on common bean. Agronomy Journal 93 (5): 989-91.
 
Dinh, H. X., Singh, D., Periyannan, S., Park, R. F., and Pourkheirandish, M. 2020. Molecular genetics of leaf rust resistance in wheat and barley. Theoretical and Applied Genetics 133: 2035-50.
 
Dyck, P. L.1987. The association of a gene for leaf rust resistance with the chromosome 7D suppressor of stem rust resistance in common wheat. Genome 29: 467–469.
 
Ebrahimian, M., Nasrollahnezhad Ghomi, A., Zeynali Nezhad, Kh., and Ramezanpour, S. 2019. Evaluation of resistance to leaf rust at adult stage in some bread wheat cultivars. Journal of Plant Production 26 (3): 89-102 (in Persian).
 
Gurung, S., Mamidi, S., Bonman, J. M., Xiong, M., Brown-Guedira, G., and Adhikari, T. B. 2014. Genome-wide association study several novel quantitative trait loci associated with plant immunity against major leaf spot diseases of spring wheat. PLoS One 9 (9): e108179.
 
Herrera-Foessel, S. A., Singh, R. P., Huerta-Espino J., Rosewarne, G. M., Periyannan, S. K., Viccars, L., Calvo-Salazar, V., Lan, C., and Lagudah, E. S. 2012. Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat. Theoretical and Applied Genetics 124 (8):1475–86.
 
Hiebert, C. W., Thomas, J. B., McCallum, B. D., Humphreys, D. G., DePauw, R. M., Hayden, M. J., Mago, R., Schenippenkoetter, W., and Spielmeyer, W. 2010. An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI250413) confers adult plant resistance to stripe rust and leaf rust (Lr67). Theoretical and Applied Genetics 121 (6):1083–1091.
 
Jin, Y., Szabo, L. J., and Carson, M. 2010. Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis as an alternate host. Phytopathology 100: 432–435.
 
Kertho, A., Mamidi, S., Bonman, J. M., McClean, P., and Acevedo, N. 2015. Genome-wide association mapping for resistance to leaf and stripe rust in winter habit hexaploid wheat landraces. PLoS One 10 (6): e0129580.
 
Khodarahmi, M., Mohammadi, S. A., Bihamta, M. R., Majidi, E., and Jalal Kamali, M. R. 2014. Inheritance and combining ability of yellow rust resistance in some bread wheat commercial cultivars and advanced lines. Seed and Plant Journal 30: 531-544 (in Persian).
 
Kolmer. J. 2013. Leaf rust of wheat: pathogen biology, variation and host resistance. Forests 4: 70-84.
 
Kumar, D., Kumar, A., Chhokar, V., Gangwar, O. P., Bhaardwaj, S. C., Sivasamy, M. Sai Prasad, S. V., Prakasha, T. L., Khan, H. Singh, R., Sharma, P., Sheoran, S. Iquebal, M. A., Jaiswal, S., Angadi, U. B., Singh, G., Rai, A., Singh, G. P., Kumar, D., and Tiwari, R. 2020. Genome wide association studies in diverse spring wheat panel for stripe, stem and leaf rust resistance. Frontiers in Plant Science 3 (11):748.
 
Line, R. 2002. Stripe rust of wheat and barley in North America: a retrospective historical review. Annual Review of Phytopathology 40: 75–118.
 
Marasas, C., Smale, M., and Singh, R. P. 2004. The economic impact in developing countries of leaf rust resistance breeding in CIMMYT related spring bread wheat. Economics Program Paper 04-01. CIMMYT. Mexico D. F. 39 pp.
 
McIntosh, R. A., Dubcovsky, J., Rogers, W. J., Morr, C., Appels, R., and Xia, X. 2014. Catalogue of gene symbols for wheat: 2013-2014 Suplement. 31 pp.
 
McIntosh, R. A. 1988. Genetic strategies for disease control. pp. 39-44. In: Proceedings of the Seventh International Wheat Genetic Symposium.
 
McIntosh, R. A., Wellings, C. R., and Park, R. F. 1995. Wheat rusts: An altas of resistance genes. Kluwer Academic Publishers. The Netherlands. 213 pp.
 
Mirzania, M., Darvishnia, M., Ahmadi, H., Goudarzi, D., Nasrolahi, M. 2015. Study of resistance components at seedling stage to leaf rust (Puccinia triticina Eriksson) in some commercial cultivars. Iranian Journal of Plant Pathology 51 (2): 263-267 (in Persian).
 
Mohajervatan, F., Nasrollahnejad Ghomi, A. A., Kalate Arabi, M., and Dehghan, M. A. 2016. Evaluation of resistance to leaf rust in some wheat cultivars in field and greenhouse conditions. Journal of Crop Breeding 8 (20): 70-76 (in Persian).
 
Newcomb, M., and Acevedo, M. 2013. Field resistance to the Ug99 race group of the stem rust pathogen in spring wheat landraces. Plant Disease 97: 882–890.
 
Omrani, A., Khodarahmi, M., and Afshari, F. 2016. The evaluation of stripe rust resistance sources in selected wheat genotypes to Puccinia Striiformis f. sp. tritici races. New Genetics 11 (4): 547-558 (in Persian).
 
Peterson, R. F., Campbell, A. B., and Hanahh, A. E. 1948. A diagrammatic scale for estimating rust intensity of leaves and stems of cereals. Canadian Journal of Research 26: 496-500.
 
Qayoum, A., and Line, R.1985. High-temperature, adult-plant resistance to stripe rust of wheat. Phytopathology 75: 1121–1125.
 
Roelfs, A. P., Singh, R. P., and Saari, E. E. 1992. Rust disease of wheat: concepts and methods of disease management. CIMMIT. Mexico, D.F. 81 pp.
 
Sapkota, S., Hao, Y., Johnson, J., Buck, J., Aoun, M., and Mergoum, M. 2019. Genome-wide association study of a worldwide collection of wheat genotypes reveals novel quantitative trait loci for leaf rust resistance. Plant Genome 12: 190033.
 
doi: 10.3835/ plantgenome2019.05.0033. Shaner, G. 1980. Probits for analyzing latent period data in studies of slow rusting resistance. Phytopathology 70 (12): 1179-1182.
 
Shaner, G., and Hess, F. D. 1978. Equation for integrating components of slow leaf rusting resistance in wheat. Phytopathology 68: 1464-69.
 
Singh, R. P., Mujeeb-Kazi, A., and Huerta-Espino, J. 1998. Lr46: a gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathology 88: 890–894.
 
Stackman, E. C., Stewart, D. M., and Loegering, W. Q. 1962. Identification of physiologic races of Puccinia graminis var. tritici. Agricultural Research Service. United State Department of Agriculture. 54 pp.
 
Torabi, M., Mardoukhi, V., Froutan, A., Aliramaei, M., Dadrezaie, S. T., Akbari Moghaddam, H., Rajaei, S., and Azimi, H. 2003. Virulence genes of Puccinia recondita f. sp. tritici, the causal agent of wheat leaf rust in some regions of Iran during 1995-1999.Seed and Plant Journal 18: 432-449 (in Persian).
 
Vale, F. X. R., Parlevliet, J. E., and Zambolim, L. 2001. Concepts in plant disease resistance. Fitopatologia Brasileira 26 (3): 577-589.
 
Zarandi, F., Afshari, F., and Rezaei, S. 2009. Study of resistance components at seedling stage and field resistance to leaf rust in some elite wheat lines. Seed and Plant Improvement Journal 1 (25): 569-584 (in Persian).
 
Zhang, D., Bowden, R.L., Yu, J., Carver, B. F., and Bai, G. 2014. Association analysis of stem rust resistance in US winter wheat. PLoS One 9 (7): e103747.
 
Zurn, J. D., Newcomb, M., Rouse, M. N., Jin, Y., Chao, S., Sthapit, J., See, D. R., Wanyera, R., Njau, P., Bonman, J. M., Brueggeman, R., and Acevedo, M. 2014. High-density mapping of a resistance gene to Ug99 from the Iranian landrace PI 626573. Molecular Breeding 34 (3): 871–881.