بررسی صفات کمی و کیفی و پایداری ارقام تجاری وکلون‌های امیدبخش سیب‌زمینی

نویسندگان

1 بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اردبیل (مغان)، سازمان تحقیقات، آموزش و ترویج کشاورزی، مغان، ایران.

2 مؤسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

3 بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان همدان، سازمان تحقیقات، آموزش و ترویج کشاورزی، همدان، ایران.

4 بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران.

5 بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اصفهان، ایران.

6 مؤسسه تحقیقات ثبت و گواهی بذر و نهال، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

به منظور بررسی خصوصیات کمی و کیفی هشت کلون امیدبخش و سه رقم تجاری سیب‌زمینی، آزمایشی در قالب طرح بلوک‌های کامل تصادفی با چهار تکرار در پنج منطقه (کرج، اردبیل، مشهد، اصفهان و همدان) طی سال‌های 93-1392 انجام شد. در این تحقیق صفات متوسط وزن غده، تعداد و وزن غده در بوته، عملکرد غده، ارتفاع بوته، تعداد ساقه اصلی در بوته، شکل غده، عمق چشم، رنگ پوست و گوشت غده، دوره رشد، حفره‌ای شدن و زنگ داخلی غده، تغییر رنگ گوشت غده خام و درصد ماده خشک غده اندازه‌گیری شد. نتایج تجزیه واریانس مرکب نشان داد اثرات مکان، سال×مکان، ژنوتیپ، ژنوتیپ×مکان و ژنوتیپ×سال×مکان بر عملکرد غده معنی‌دار بود. نتایج تجزیه بای پلات نشان داد کلون‌های پنج (16-397031)، یازده (13-397045) و نُه (8-397009) عملکرد غده و پایداری بیشتری داشتند. این کلون‌ها به ترتیب گوشت غده کرم، زرد روشن و کرم، پوست غده زرد، زرد و زرد، شکل غده گرد تخم‌مرغی، گرد تخم‌مرغی و گرد، و عمق چشم سطحی، متوسط و متوسط داشتند و زنگ داخلی و حفره‌ای شدن غده در آن‌ها خیلی کم بود. کلون‌های یازده و پنج ماده خشک غده بالایی داشتند (به ترتیب 99/22 و 27/22 درصد). در مجموع بر اساس پایداری عملکرد غده و خصوصیات کمی و کیفی، کلون‌های پنج، نُه و یازده انتخاب شدند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Quantitative and Qualitative Traits and Stability of Commercial Cultivars and Promising Clones of Potato

نویسندگان [English]

  • D. Hasanpanah 1
  • H. Hasanabadi2 2
  • Kh. Parvizi 3
  • M. Kazemi4 4
  • A. H. Jalali 5
  • S. Mobaser 6
  • M. Kahbazi 2
  • M. Hasani 2
  • R. Mohammadi 1
  • M. R. Khashmi 1
1 Crop and Horticultural Science Research Department, Ardabil Agricultural and Natural Resources Research and Education Center, AREEO, Moghan, Iran.
2 Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
3 Crop and Horticultural Science Research Department, Hamedan Agricultural and Natural Resources Research and Education Center, AREEO, Hamedan, Iran.
4 Crop and Horticultural Science Research Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran.
5 Crop and Horticultural Science Research Department, Isfahan Agricultural and Natural Resources Research and Education Center, AREEO, Isfahan, Iran.
6 Seed and Plant Certification and Registration Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
چکیده [English]

To evaluate the quantitative and qualitative characteristics of eight promising clones and three commercial cultivars of potato, an experiment was conducted based on a randomized complete blocks design (RCBD) with four replications in five regions (Karaj, Ardabil, Mashhad, Esfahan and Hamedan) during 2013-14. In this study, traits of average tuber weight, number and weight of tuber per plant, tuber yield, plant height, number of main stem per plant, tuber shape, eye depth, color of tuber skin and flesh, growth period, tuber hollow heart and tuber inner ring were measured. Results of combined analysis of variance showed that the effects of region, region × year, genotype, region × genotype and region × year × genotype on tuber yield were significant. Results of bi-plot analysis showed that clones 5 (397031-16), 11 (397045-13) and 9 (397009-8) had higher tuber yield and stability. These clones had cream, light yellow and cream tuber flesh, yellow, yellow and yellow tuber skin, round oval, round oval and round tuber shape and shallow, medium and medium eye depth, respectively, and the tuber hollow heart and inner ring were very little in them. The clones 11 and 5 had a high tuber dry matter (22.99 and 22.27, respectively). Overall, based on tuber yield stability and quantitative and qualitative characteristics, the clones 5, 9 and 11 were selected.

کلیدواژه‌ها [English]

  • Potato (Solanum tuberosum)
  • bi-plot analysis
  • tuber yield
  • quality
Anonymous. 2007. Procedures for Standard Evaluation Trials of Advanced Potato Clones. International Potato Center 126 pp. Anonymous. 2016. Agricultural Statistics. Ministry of Jihad-e-Agriculture, Tehran, Iran (in Persian).
 
Bhan, M. K., Pal, S., Rao, B. L., Dhar, A. K., and Kang, M. S. 2005. GGE Bi-plot analysis of oil yield in Lemongrass (Cymbopogon spp). Journal of New Seeds 7(2): 127-139.
 
Crossa, J., Gauch, H. G., and Zobel, R. W. 1990. Additive main effects and multiplicative interaction analysis of two international maize cultivar trials. Crop Science 30: 493-500.
 
Ebdon, J. S., and Gauch, H. G. 2002. Additive main effect and multiplicative interaction analysis of national turf-grass performance trials. II cultivar recommendations. Crop Science 42: 497-506.
 
Fan, X. M., Kang, M. S., Zhang, H. Y., Tan, J., and Xu, C. 2007. Yield stability of maize hybrids evaluated in multi-environment trials in Yunnan, China. Agronomy Journal 99: 220-228.
 
Gauch, H. G., and Zobel, R. W. 1989. Accuracy and selection success in yield trials. Theoretical and Applied Genetics 77: 473-481.
 
Gauch, H. G., and Zobel, R. W. 1997. Identifying mega-environments and targeting genotypes. Crop Science 37: 311-326.
 
Hassanabadi, H., Mousapour Gorji, A., Hassanpanah, D., Ahmadvand, R., Parvizi, K., Kazemi, M., Hajianfar, R., and Abdi, H. R. 2013. Khavarn, potato new cultivar with high yield and good quality. Journal of Research Achievments for Field and Horticulture Crops 2(1): 67-79 (in Persian).
 
Hassanpanah, D. 2011. Analysis of G×E interaction by using the additive main effects and multiplicative interaction (AMMI) in potato cultivars. African Journal of Biotechnology 2(10): 154-158.
 
Hassanpanah, D. 2014. Evaluation of genetic diversity for agronomic traits in 65 genotypes potato with the use of factor and cluster analysis. Crop Eco-Physiology 8(29): 83-96 (in Persian).
 
Hassanpanah, D., and Hassanabadi, H. 2011. Evaluation of quantitative and qualitative characteristics of promising potato clones in Ardabil region, Iran. Modern Science of Sustainable Agriculture 7(1): 37-48 (in Persian).
 
Hassanpanah, D., and Hassanabadi, H. 2014. Evaluation of quantitative and qualitative traits of advanced clones and potato cultivars with using AMMI and GGE Bi-plot models. Crop Eco-Physiology 8(30): 149-168 (in Persian).
 
Hassanpanah, D., Hassanabadi, H., Yarnia, M., and Khorshidi, M. B. 2008. Evaluation of quantitative and qualitative characters of advanced cultivars and clones of potato in Ardabil region. Journal of Agricultural Science 2(5): 19-31 (in Persian).
 
Kaya, Y. K., Palta, E., and Taner, S. 2002. Additive main effects and multiplicative interactions analysis of yield performances in bread wheat genotypes across environments. Turkish Journal of Agriculture and Forestry 26: 275-279.
 
Kempton, R. A. 1984. The use of biplots in interpreting variety by environment interactions. The Journal of Agricultural Science 103: 123-135.
 
Khandan, A., Mobaser, S., Moslemkhani, K., and Hassanabadi, H. 2011. National Guideline for Determine the Crop Value of Potato Cultivars. Seed and Plant Certification and Registration Institute 35 pp. (in Persian).
 
Lin, C. S., and Binns, M. R. 1989. Comparison of unpredictable environmental variation generated by year and by seeding-time factors for measuring type 4 stability. Theoretical and Applied Genetics 78: 61-64.
 
Madah Arefi, H., Sadeghian Motahar, S. Y., Mahmodi, S. B., Sabagpour, H., Mozafari, J., Khandan, A., Mobasser, S., Moslemkhani, K., and Hassanabadi, H. 2007. National Guideline for Testing Value for Cultivation and Use in Potato. Seed and Plant Certification and Registration Institute 34 pp. (in Persian).
 
Manrique, K., and Hermann, M. 2000. Effect of G×E interaction on root yield and beta-carotene content of selected sweet-potato (Ipomoea batatas (L) Lam.) varieties and breeding clones. International Potato Center (CIP), Lima, Peru. pp. 281-287.
 
Mohammadi, R., Armiyoun, M., Zade-Hassan, I., Ahmadi, M. M., and Sadeghzadeh, D. 2013. Genotype × environment interaction for grain yield of rainfed durum wheat using the GGE bipot model. Seed and Plant Improvement Journal 28-1(3): 504-518 (in Persian).
 
Mohammadi, R., Dehghani, H., and Karimzadeh, G. H. 2014. Graphic analysis of trait relations of cantaloupe using the Biplot method. Journal Plant Prodution Research 21(4): 43-62 (in Persian).
 
Mulema, J. M. K., Adipala, E., Olanya, O. M., and Wagoire, W. 2008. Yield stability analysis of late blight resistant potato selections. Journal of Experimental Agriculture 44: 145-155.
 
Pourdad, S., and Jamshid Moghaddam, M. 2013. Study on genotype × environment interaction through GGE biplot in spring safflower (Carthamus tinctorius L.). Journal of Crop Production and Processing 2(6): 99-108 (in Persian).
 
Pourdad, S. S., and Jamshid Moghaddam, M. 2014. Study on genotype × environment interaction through GGE Biplot for seed yield in spring rapeseed (Brassica napus L.) in rainfed condition. Journal of Crop Breeding 5(12): 1-14 (in Persian).
 
Sabaghnia, N., Dehghannia, H., and Sabaghpour, S. H. 2006. Nonparametric methods for interpreting genotype × environment interaction of lentil genotypes. Crop Science 46: 1100-1106.
 
Tarakanovas, P., and Ruzgas, V. 2006. Additive main effect and multiplication interaction analysis of grain yield of wheat varieties in Lithuania. Agronomy Research 41(1): 91-98.
 
Tonk, F. A., Ilker, E., and Tosun, M. 2011. Evaluation of genotype × environment interactions in maize hybrids using GGE biplot analysis. Crop Breeding and Applied Biotechnology 11: 1-9.
 
 
Vargas, M., and Crossa, J. 2000. The AMMI Analysis and the Graphing the Bi-plot. CIMMYT, Mexico 39 pp
 
Yan, W. 2001. GGE biplot- A windows application for graphical analysis of multi-environment trial data and other types of two-way data. Agronomy Journal 93: 1111-1118.
 
Yan, W. 2002. Singular-value partitioning in bi-plot analysis of multi-environment trial data. Agronomy Journal 94: 990-996.
 
Yan, W., and Hunt, L. A. 2002. Bi-plot analysis of multi-environment trial data. In: Kang, M. S. (ed.). Quantitative Genetics, Genomics and Plant Breeding. CABI Publishing, Wallingford, Oxon, U.K. pp 289-303.
 
Yan, W., and Kang, M. S. 2003. GGE Bi-plot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists. CRC Press, Boca Raton, FL. 288 pp.
 
Yan, W., and Tinker, N.A. 2005. An integrated system of bi-plot analysis for displaying, interpreting and exploring genotype by-environment interactions. Crop Science 45: 1004-1016.
 
Yan, W., and Tinker, N. A. 2006. Bi-plot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Science 86(3): 623-645.
 
Yan, W., Hunt, L.A., Sheng, Q., and Szlavnics, Z. 2000. Cultivar evaluation and mega-environment investigations based on the GGE biplot. Crop Science 40: 597-605.
 
Zerihun, J. 2011. GGE-biplot analysis of multi-environment yield trials of barley (Hordeium vulgare L.) genotypes in Southeastern Ethiopia highlands. International Journal of Plant Breeding and Genetics 5: 59-75.