تجزیه پایداری عملکرد دانه چند ژنوتیپ لوبیا سفید (Phaseolus vulgaris L.) با استفاده از روش AMMI

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مربی، بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان لرستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، خرم آباد، ایران

2 بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان لرستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، خرم آباد، ایران

3 بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان مرکزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، اراک، ایران

4 بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آموزش کشاورزی و منابع ظبیعی استان زنجان، سازمان تحقیقات، آموزش و ترویج کشاورزی، زنجان، ایران

5 استادیار، بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آموزش کشاورزی و منابع ظبیعی استان آذربایجان شرقی، سازمان تحقیقات، آموزش و ترویج کشاورزی، تبریز، ایران

چکیده

اثر متقابل ژنوتیپ × محیط، در انتخاب ژنوتیپ‌های برتر نقش مهمی دارد. به منظور بررسی اثر ژنوتیپ، محیط و اثر متقابل ژنوتیپ × محیط برای عملکرد دانه در لوبیا سفید، دوازده ژنوتیپ در یک طرح بلوک کامل تصادفی با سه تکرار در چهار مکان (بروجرد، زنجان، خمین و تبریز) دو سال زراعی (93-1391) مورد بررسی قرار گرفتند. نتایج تجزیه واریانس مرکب، معنی‌دار بودن اثر ژنوتیپ، محیط و اثر متقابل ژنوتیپ × محیط بر عملکرد دانه را نشان داد. بیشترین و کمترین عملکرد دانه ژنوتیپ‌ها به ترتیب متعلق به ایستگاه بروجرد (4335 کیلوگرم در هکتار) و ایستگاه خمین (2/1354کیلوگرم در هکتار) بود. نتایج تجزیه واریانس امی (Ammi) نشان داد که اثر شش مؤلفه بر عملکرد دانه معنی‌دار بود و مؤلفه هفتم به عنوان نویز در نظر گرفته شد. در این مطالعه اثر متقابل ژنوتیپ × محیط مهم‌تر از اثر اصلی ژنوتیپ برای عملکرد دانه بود. دو مؤلفه اصلی اول مدل امی 71درصد کل واریانس عملکرد را توجیه کردند. بر اساس مقادیر اولین مؤلفه اصلی معنی‌دار، ارزش پایداری امی (ASV) و شاخص پایداری ژنوتیپ (GSI)، ژنوتیپ 11805/DANESHKADEH به‌عنوان ژنوتیپ با عملکرد و پایداری، عملکرد بالا شناخته شد.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of Yield Stability of some White Bean (Phaseolus vulgaris L.) Genotypes using AMMI Method

نویسندگان [English]

  • M.H. Kooshki 1
  • M. Ghaedrahmati 2
  • B. Assadi 3
  • M. Kamel 4
  • M.B. Khorshidi Benam 5
  • H.R. Dorri 3
1 Instructor, Seed and Plant Improvement Research Department, Lorestan, Agricultural and Natural Resources Research and Education Center, AREEO, Khoramabad, Iran.
2 Seed and Plant Improvement Research Department, Lorestan, Agricultural and Natural Resources Research and Education Center, AREEO, Khoramabad, Iran.
3 respectively, respectively, Seed and Plant Improvement Research Department, Markazi Agricultural and Natural Resources Research and Education Center, AREEO, Arak, Iran.
4 Instructor, Seed and Plant Improvement Research Department, Zanjan Agricultural and Natural Resources Research and Education Center, AREEO, Zanjan, Iran.
5 Assistant Professor, Seed and Plant Improvement Research Department, East Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Tabriz, Iran.
چکیده [English]

Genotype × environment interaction effects have important roll in superior genotypes selection. To study genotype, environment and genotype × environment effects on seed yield, twelve white bean genotypes were evaluated in a randomized complete block design with three replications at four locations (Broujerd, Zanjan, Khomein and East Azarbaijan)for two years (2012-2014). Results of combined variance analysis showed significance of genotype, environment and genotype × environment effects on seed yield. The highest and lowest seed yield of genotypes were obtained in Broujerd (4335 kgha-1) and Khomein (1354.2 kgha-1) stations, respectively. Analysis of AMMI variance showed that six IPCAs were significant and seventh IPCA was considered as noise. Genotype × environment interaction effect was more important than main effect of genotype. First two main components explained 71% of total yield variance. According to values of first significant main component (PCA1), AMMI stability value (ASV) and genotype stability index (GSI), genotype 11805/DANESHKADEHwas known as the most stable genotype with high yield.

کلیدواژه‌ها [English]

  • White bean
  • genotypes
  • genotype × environment effect
  • AMMI stability value (ASV)
  • Genotype stability index (GSI)
Akbarpour, O. A., Dehghani, H., and Sorkhi Lallahloo, B. 2011.Study of stability parameters of univariate and multivariate for barely promising genotypes under cool conditions in Iran. Iranian Journal of Field Crop Sciences 42 (1): 23-32 (in Persian).
 
Bashir, E. M. A., Ali, A. M., Ali, A. M., Ismail, M. I., Parzies, H. K., and Haussman, B. I. G. 2014. Patterns of pear millet genotype- by- environment interaction for yield performance and grain iron (Fe) and zinc (Zn) concentration in Sudan. Field Crops Research 79: 1-10.
 
Becker, H.C., and Léon, J. 1988. Stability analysis in plant breeding. Plant Breeding. 101: 1-23.
 
Comstock, R. E. 1997. Quantitative genetics and the design of breeding programs. pp. 705-718. In: Proceedings of the International Conference on Quantitative Genetics, Iowa State University, Ames, USA.
 
Cooper, M., Rajatasereekul, S., Immark, S., Fukai, S., and Basnayake, J. 1999. Rainfed lowland rice breeding strategies for Northeast Thailand: I. Genotypic variation and genotype-environment interactions for grain yield. Field Crops Research 64: 131-151.
 
Costa, J. G. C., Rava, C. A., Zimmermann,F. J. P., and Melo, L. C. 2008. Yield stability and adaptability of common bean line developed by Embrapa. Pesquisa Agropecuária Tropical 38 (2): 141-145.
 
Ebdon, J. S., and Gauch, H. G. 2002. Additive main effects and multiplicative interaction analysis of national turf grass performance trials. Crop Science 42: 497-506.
 
Farshadfar, E. 2008. Incorporation of AMMI stability value and grain yield in a single non-parametric index (GSI) in bread wheat.Pakistan Journal of Biological Sciences 11 (14): 1791-1796.
 
Farshadfar, E., and Sutka, J. 2000. Combining ability analysis of drought tolerance in wheat over different water regimes.ActaAgronomica Hungarica 48: 353-361.
 
Flores, F., Moreno, M. T., and Cubero, J. I. 1998. A comparison of univariate and multivariate methods to analyze G×E interactions. Field Crops Research 56: 271-286.
 
Gauch, H. G. 2006. Statistical analysis of yield trials by AMMI and GGE. Crop Science 46: 1488-1500.
 
Haussmann, B. I. G., Rattunde, H. F. W., Weltzien-Rattunde, E., Traoré, P. S. C., vomBrocke, K., and Parzies, H. K. 2012. Breeding strategies for adaptation of pearl millet and sorghum to climate variability and change in West Africa. Journal of Agronomy and Crop Science 198: 327-339.
 
Kang, M. S. 1990. Understanding and utilization of genotype- by- environment interaction in plant breeding. pp. 52-68. In: Kang, M. S. (ed.) Genotype- by- Environment, Interaction and Plant Breeding, Louisiana State University, Department of Agronomy, Baton Rouge, Louisian, USA.
 
Kilic, H., Mevlut, A., and Husnu, A. 2010. Assessment of parametric and non-parametric methods for selecting stable and adapted durum wheat genotypes in multi-environments. Notulae Botanicae Hort Agrobotanici 38: 271-279.
 
Kandus, M., Almorza, D., BoggioRonceros, R., and Salerno, J. C. 2010. Statistical models for evaluating the genotype-environment interaction in maize. International Journal of Experimental Botany 79: 39-46.
 
Khalifa, G. E., Eljack,A. E.,Mohammed,M. I.,Elamin, O. M., and Mohamed, E. S. 2013. Yield stability in bean genotypes (Phaseolus vulgaris L.) in the Sudan. Journal of Plant Breeding and Crop Science 5(10): 203-208.
 
Kumar Bose, L., Namdeorao Jambhulkar, N., Pande, K., and Nath Singh, O. 2014. Use of AMMI and other stability statistics in the simultaneous selection of rice genotypes for yield and stability under direct-seeded conditions. Chilean Journal of Agricultural Research 74 (1): 1-7.
 
Liang, S., Ren, G., Liu, J., Zhao, X., Zhou, M., McNeil, D., and Ye, G. 2015. Genotype- by- environment interaction is important for grain yield in irrigated Lowland rice. Field Crops Research 180: 90-99.
 
Lin, C. S., Binns, M. R., and Lefkovitch, L. P. 1986. Stability analysis: where do we stand? Crop Science 26: 894-900.
 
Mut, Z., Gulumser, A., and Sirat, A. 2010. Comparison of stability statistics for yield in barely (Hordeum vulgareL.). African Journal of Biotechnology 9: 1610-1618.
 
Najafian, G., Kaffashi, A. K., and Jafar-Nezhad, A. 2010. Analysis of grain yield stability in hexaploid wheat genotypes grown in temperate regions of Iran using additive main effects and multiplicative interaction. Journal of Agricultural Science and Technology 12: 213-222.
 
Naroui Rad, M. R., Abdul Kadir, M., Rafii, M. Y., Jaafar, H. Z. E., Naghavi, M. R., and Ahmadi, F. 2013. Genotype × environment interaction by AMMI and GGE biplot analysis in three consecutive generations of wheat (Triticum aestivumL.) under normal and drought stress conditions. Australian Journal of Crop Science 7 (7): 956-961.
 
Okechukwu, R. U., and Dixon, A. G. O. 2009. Performance of improved cassava genotypes for early bulking, disease resistance, and culinary qualities in an inland valley ecosystem. Agronomy Journal 101: 1258-1265.
 
Osiru, M. O., Olanya, O. M., Adipala, E., Kapinga, R., and Lemaga, B. 2009. Yield stability analysis of Ipomoea batatusL. cultivars in diverse environments. Australian Journal of Crop Science 3: 213-220.
 
Pham, H. N., and Kang, M. S. 1988. Interrelationships among repeatability of several stability statistics estimated from international maize trials. Crop Science 28: 925-928.
 
Pereira, H. S., Bueno, L. G., Peloso, M. J. D., Abreu, A. D. F. B., Moreira, J. A. A., Martins, M., Wendland, A., Faria, L. C. D., de Souza, T. L. P. O., and Melo, L. C. 2014. Agronomic performance and stability of Andean common bean lines with white grains in Brazil.http://dx.doi.org/10.1590/brag.2014.020.
 
Pereira, H. S., Melo, L. C., Del Peloso, J. M., Faria, L. C., and Ferreira, A. W. 2011. Complex interaction between genotypes and growing seasons of Carioca common bean in Goias/ Distrito federal. Crop Breeding and Applied Biotechnology 11: 207-215.
 
Pfeiffer, W. H., Sayre, K. D., and Reynolds, M. P. 2000. Enhancing genetic grain yield potential and yield stability in durum wheat.Durum Wheat Improv. Mediterr. Reg. New Chall. Options Méditerranéennes Ser. A. 40: 88-93.
 
Purchase, J. L., Hatting, H., and van Deventer, C. S. 2000. Genotype ×environment interaction of winter wheat in south Africa II. Stability analysis of yield performance. South African Journal of Plant and Soil 17: 101-107.
 
Sabah, M. A., El-Hady, M. M., El-Taweel, A. M., and El-Harty, E. H. 2007. Stability statistics of some faba bean genotypes. Annals of Agricultural Sciences 45: 525-544.
 
Sabaghpour, S. H., Pezeshkpour, P., Sarparast, R., Saeed, A, Safikhani, M., Hashembeygi, A. A., and Karimi, I. 2010. Study of grain yield stability in chickpea (Cicer arietinum L.) genotypes in autumn plating in dryland conditions. Seed and Plant Improvement Journal 26-1 (2): 173-191 (in Persian).
 
Setimela, P., Chitalu, Z., Jonazi, J., Mambo, A., Hodson, D., and Bänziger, M. 2005. Environmental classification of maize-testing sites in the SADC region and its implication for collaborative maize breeding strategies in the subcontinent. Euphytica 145: 123-132.
 
Shobeiri, S. S., Mostafaei, H., Shahab, M. R., and Kamel, M. 2015. Adaptation and seed yield stability of advanced lentil lines under cold dryland conditions of Iran. Seed and Plant Improvement Journal 31-1 (3): 491-508.
 
Ssemakula, G., and Dixon, A. 2007. Genotype × environment interaction, stability and agronomic performance of carotenoid-rich cassava clones. Scientific Research and Essays 2: 390-399.
 
Suja, G., John, K.S., Sreekumar, J., and Srinivas, T. 2009. Short-duration genotypes for crop diversification in the humid tropics: growth dynamics, biomass, yield and quality. Journal of the Science of Food and Agriculture 90: 188-198.
 
Tamesgen, T., Keneni, G., Sefera, T., and Jarso, M. 2015. Yield stability and relationship among stability parameters in faba bean (Vicia faba L.) genotypes. The Crop Journal 3: 258-268.
 
Tumuhimbise, R., Melis, R., Shanahan, P., and Kawuki, R. 2014. Genotype × environment interaction effects on early fresh storage root yield and related traits in Cassava. The Crop Journal 2: 329-337.
 
Windhausen, V. S., Wagener, S., Magorokosho, C., Makumbi, D., Vivek, B., Piepho, H. P., Melchinger, A. E., and Atlin, G. N. 2012. Strategies to subdivide a target population of environments: results from the CIMMYT-Led maize hybrid testing programs in Africa. Crop Science 52: 2143-2152.
 
Yaghotipoor, A., Farshadfar, E., and Gheytoli, M. 2009. Study of yield stability in pea using AMMI model in Kermanshah. Plant Production 32 (1): 25-37 (in Persian).
 
Zali, H., Farshadfar, E., and Sabaghpour, S. H. 2011. Non-parametric analysis of phenotypic stability in chickpea (Cicer arietinum L.) genotypes in Iran. Crop Breeding Journal 1: 89-100 (in Persian).
 
Zali, H., Sabaghpour, S. H., Farshadfar, E., Pezeshkpour, P., Safikhani, M., Sarparast, R., and Hashembeygi, A. A. 2009. Stability analysis of pea genotypes using ASV parameter and comparison with other method of stability analysis. Iranian Journal of Field Crop Science 40 (2): 21-29 (in Persian).
 
Zubair, M., and Ghafoor, A. 2001. Genotype environment interaction in mungbean. Pakistan Journal of Botany 33: 187-190.