مروری بر عارضه سفیدشدگی آریل در انار (.Punica granatum L): سبب‌شناسی، سازکار‌های موثر و راهکارهای مدیریت تلفیقی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران.

2 دانشیار، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه جهرم، جهرم، ایران.

10.22092/spj.2026.371729.1458

چکیده

عارضه سفیدشدگی آریل (Aril paleness disorder) در انار که به نام‌های کم­رنگی یا رنگ­پریدگی آریل نیز شناخته می‌شود، یک عارضه فیزیولوژیک نوظهور است که شدیداً بر کیفیت درونی، ارزش بازار و پتانسیل آنتی‌اکسیدانی میوه انار تأثیر منفی می‌گذارد. این عارضه که با کاهش قابل توجه یا توسعه نامنظم رنگدانه‌های قرمز در آریل‌ها مشخص می‌شود، حاصل برهمکنش پیچیده عوامل ژنتیکی، فیزیولوژیکی، محیطی و تغذیه‌ای است. در سال­های اخیر، بیرنگی آریل­ها به یک مسئله بحرانی در مناطق اصلی تولید انار، به ویژه در ایران، تبدیل شده است. این مقاله مروری، یافته‌های اخیر در مورد سبب­شناسی، سازکارهای موثر و مدیریت تلفیقی را با تمرکز ویژه بر بینش‌های حاصل از پژوهش­های مولکولی و بیوشیمیایی ترکیب می‌کند. عوامل مهم و موثر در بروز عارضه سفیدشدگی آریل انار شامل: حساسیت رقم، کاهش بیان ژن‌های بیوسنتز آنتوسیانین بویژه ژن UFGT، کمبود عناصر معدنی حیاتی (کلسیم، آهن، روی) و تنش‌های محیطی مانند دمای بالا، شوری خاک و آبیاری با آب شور است. برخلاف فرضیه‌های قبلی، شواهد جدید نشان می‌دهد که تنش اکسیداتیو و تخریب آنتوسیانین ممکن است در درجه دوم نسبت به اختلال در بیوسنتز آن قرار گیرند. مدیریت مؤثر این عارضه نیازمند یک رویکرد مدیریت تلفیقی است که ترکیبی از انتخاب ارقام متحمل، تغذیه بهینه برگی (به‌ویژه کلسیم، پتاسیم، آهن و روی)، محلول­پاشی با سیلیسیم و کائولین، مدیریت تاج برای کاهش تنش گرمایی با استفاده از روش­های هرس و تربیت مناسب، سامانه­های سایه­دهی و آبیاری دقیق را در بر می‌گیرد. این مقاله مروری، دانش فعلی را از جنبه­های مختلف بررسی کرده، شکاف‌های موجود برای شناسایی این عارضه را برجسته و جهت­گیری­های پژوهشی آینده، از جمله کاربرد فناوری‌های اُمیکس و ویرایش ژنوم را برای توسعه راهکارهای پایدار برای رفع این عارضه پیشنهاد کرده است.

کلیدواژه‌ها


عنوان مقاله [English]

A Review of Aril Paleness Disorder in Pomegranate (Punica granatum L.): Etiology, Effective Mechanisms, and Integrated Management Approaches

نویسندگان [English]

  • J. Erfani-Moghadam 1
  • A. Zarei 2
1 Associate Professor, Department of Horticultural Sciences, Faculty of Agriculture, Ilam University, Ilam, Iran.
2 Associate Professor, Department of Plant Production and Genetics, Faculty of Agriculture, Jahrom University, Jahrom, Iran.
چکیده [English]

Aril paleness disorder (APD), also known as aril whitening, is an emerging physiological disorder that severely affect the internal quality, market value, and antioxidant potential of pomegranate fruits. The disorder is characterized by a significant reduction or irregular development of red pigments in the arils. The aril paleness disorder results from a complex interplay of genetic, physiological, environmental, and nutritional factors as well as their interactions. In recent years, aril paleness has become a critical issue in major pomegranate-producing regions, most notably in Iran. This review has synthesized recent findings on the causal factors and management of APD, with a special focus on insights from molecular and biochemical studies. Key causal factors include cultivar susceptibility, reduced expression of anthocyanin biosynthesis genes especially UFGT (UDP-glucose: flavonoid 3-O-glucosyltransferase), deficiency of mineral elements (Ca, Fe, Zn), and environmental stresses such as high temperature and soil and irrigation water salinity stress. In contrary to the earlier hypotheses, emerging evidence suggests oxidative stress and anthocyanin degradation may be secondary to disruptions in their biosynthesis. Effective management of this disorder requires an integrated approach that combines the selection of tolerant cultivars, optimized foliar nutrition (particularly calcium, potassium, iron and zinc). Foliar application of silicon and kaolin, canopy management to reduce heat stress through appropriate pruning and training methods, shading systems, and precise irrigation. This review article has consolidated current knowledge from diverse perspectives, highlights existing gaps in understanding the disorder, and purposes future research directions, including the application of omics technologies and genome editing for developing sustainable solutions for mitigation of this disorder.
 
Keywords: Pomegranate, anthocyanin, mineral nutrition, UFGT gene, genome editing, environmental stresses.
 
Introduction
Aril paleness disorder (APD), also referred to as aril whitening, is an emerging physiological disorder that poses a significant threat to the internal quality, marketability, and health-promoting properties of pomegranate fruit (Khademi et al., 2025). The disorder is characterized by a marked reduction or irregular development of red pigmentation in the arils. The aril paleness disorder results from a complex interplay of genetic, physiological, environmental, and nutritional factors. In recent years, this disorder has escalated into a critical challenge in major pomegranate-producing regions, most notably in Iran, causing substantial economic losses and undermining consumer confidence (Asadi et al., 2019).
The susceptibility to the APD is strongly influenced by genotype. Molecular studies have pinpointed a key genetic determinant: a significant downregulation of the UFGT (UDP-glucose: flavonoid 3-O-glucosyltransferase) gene in affected arils (Khademi et al., 2025). This enzyme is crucial for the final glycosylation step in anthocyanin biosynthesis. Its suppression leads to a failure in producing stable, pigmented anthocyanins, which is now considered the primary molecular trigger for the APD, rather than a general oxidative stress response or anthocyanin degradation (Khademi et al., 2025). While other structural genes like PAL and CHS may also show reduced expression, the specific downregulation of UFGT gene is the most consistent biomarker of the disorder.
Physiologically, the APD is intrinsically linked to disruptions in anthocyanin metabolism. Affected arils consistently show a drastically lower total anthocyanin content compared to healthy ones, directly correlates with the loss of red color (Zarei et al., 2024b; Khademi et al., 2025). Nutritional imbalances, particularly deficiencies in key mineral elements, play a pivotal synergistic role. Research indicates that deficiencies in calcium (Ca), iron (Fe), and zinc (Zn) are closely associated with the APD incidence (Karami and Faraji, 2025). Calcium is vital for cell wall integrity, while iron acts as a co-factor for enzymes in the phenylpropanoid pathway. Zinc (Zn) influences antioxidant enzyme systems and carbohydrate metabolism, indirectly supporting secondary metabolite synthesis.
Environmental stresses are major exacerbating factors, demonstrating a clear genotype × environment interaction (Zarei et al., 2024b). High temperatures, particularly during fruit ripening stage, have been shown to suppress anthocyanin accumulation. Similarly, salinity stress from soil or irrigation water can disrupt plant metabolism and nutrient uptake, further intensifying the disorder (Sedaghat et al., 2021). The expansion of pomegranate cultivation into warmer, drier regions has been a significant driver of the APD outbreaks. Effective management of APD necessitates an integrated, multi-pronged strategy. The most promising and immediately applicable approach is application of foliar nutrition.
Recent studies have demonstrated that combination of foliar sprays of calcium, iron, and zinc, applied at key fruit developmental stages (fruit set and onset of ripening), can reduce the APD incidence and severity by up to 40% (Karami and Faraji, 2025). This treatment directly addresses the identified physiological and biochemical deficiencies. Complementary agronomic practices include the use of shade nets to mitigate heat stress and sunburn, precise irrigation management to avoid water stress during critical growth stages, and balanced nitrogen fertilization to prevent excessive vegetative growth that can limit calcium uptake.
For long-term sustainability, the development of tolerant cultivars is paramount. Future research should prioritize several key areas: 1. Development of molecular markers linked to the UFGT gene and other quantitative trait loci (QTLs) for tolerance to enable marker-assisted selection (MAS). 2. Development of tolerant cultivars. 3. Investigating the upstream regulatory networks, particularly the MYB-bHLH-WD40 transcription factor complex, which controls anthocyanin biosynthesis and may be disrupted by environmental stresses. 4. Application of high-throughput phenotyping technologies, such as hyperspectral imaging coupled with machine learning, for non-destructive screening of breeding populations (Khademi et al., 2025). 5. Integration of multi-omics approaches (transcriptomics, metabolomics, and proteomics) to build a holistic understanding of the regulatory and metabolic networks involved in the aril paleness disorder.
In conclusion, the APD is a multifaceted disorder rooted in genetic susceptibility, specific molecular dysfunction (UFGT suppression), mineral deficiencies, and environmental stresses as high temperature. While advanced foliar nutrition application offers a powerful short-term management tool, long-term solutions lie in breeding for genetic tolerance. A concerted interdisciplinary effort combining precision horticulture, molecular biology, and modern breeding technologies is essential to safeguard the future of pomegranate production under the changing climate conditions.
 
References
Asadi, E., Ghehsareh, A.M., Moghadam, E.G., Hodaji, M. and Zabihi, H.R. 2019. Improving of pomegranate aril paleness disorder through application of Fe and Zn elements. Indian Journal of Horticulture, 76(2), pp.279–288. DOI: 10.5958/0974-0112.2019.00043.4 
Karami, S. and Faraji, S. 2025. The effect of foliar spraying of iron, zinc and calcium in the stages of fruit maturity on the incidence and severity of pomegranate (Punica granatum L.) aril paleness. Journal of Horticultural Science, 39(1), pp.139–153 (in Persian). DOI: 10.22067/jhs.2024.89090.1366
Khademi, O., Zarei, A. and Naji, A. 2025. Molecular basis of aril paleness disorder in pomegranate fruit: Insights from anthocyanin biosynthesis genes. Tropical Plant Biology, 18, e70. DOI: 10.1007/s12042-025-09438-9
Zarei, A., Khademi, O. and Erfani-Moghadam, J. 2024b. Differential effects of environmental conditions on the commercially important attributes and postharvest quality of pomegranate fruit. Acta Physiologiae Plantarum, 46, 104. DOI: 10.1007/s11738-024-03724-x

کلیدواژه‌ها [English]

  • Pomegranate
  • anthocyanin
  • mineral nutrition
  • UFGT gene
  • genome editing
  • environmental stresses
Abdel-Sattar, M., Eissa, A.M., El-shazly, S.M. and Alabd, A.S. 2017. Improving quality of wonderful pomegranate by using bagging and different agrochemical treatments. Alexandria Journal of Agricultural Sciences, 62(1), pp.103-109. DOI: 10.21608/alexja.2017.5760
 
 
Abdollahi, F., Zarei, A., Erfani-Moghadam, J. and Rostaminia, M. 2024. Foliar application of silica and potassium sulphate on some characteristics of pomegranate fruit cv. ‘Malase-Saveh’. Plant Productions, 47(2), pp.309-321 (in Persian). DOI: 10.22055/ppd.2024.46385.2150
 
 
Álvarez-Fernández, A., Melgar, J.C., Abadía, J. and Abadía, A. 2011. Effects of moderate and severe iron deficiency chlorosis on fruit yield, appearance and composition in pear (Pyrus communis L.) and peach (Prunus persica (L.) Batsch). Environmental and Experimental Botany, 71(2), pp.280-286. DOI: 10.1016/j.envexpbot.2010.12.012
 
 
Asadi, E., Ghehsareh, A.M., Moghadam, E.G., Hodaji, M. and Zabihi, H.R. 2019. Improving of pomegranate aril paleness disorder through application of Fe and Zn elements. Indian Journal of Horticulture, 76(2), pp.279–288. DOI: 10.5958/0974-0112.2019.00043.4
 
 
Borochov-Neori, H., Judeinstein, S., Harari, M., Bar-Ya’akov, I., Patil, B.S. and Lurie, S. 2011. Climate effects on anthocyanin accumulation and composition in the pomegranate (Punica granatum L.) fruit arils. Journal of Agricultural and Food Chemistry, 59(10), pp.5325–5334. DOI: 10.1021/jf2003688
 
 
Chater, J.M., Merhaut, D.J., Jia, Z., Arpaia, M.L., Mauk, P.A. and Preece, J.E. 2018. Effects of site and cultivar on consumer acceptance of pomegranate. Journal of Food Science, 83(4), pp.1179–1185. DOI: 10.1111/1750-3841.14101
 
 
Davarpanah, S., Tehranifar, A., Zarei, M., Aran, M., Davarynejad, G. and Abadía, J. 2020. Early season foliar iron fertilization increases fruit yield and quality in pomegranate. Agronomy, 10(6), e832. DOI: 10.3390/agronomy10060832
 
 
Erfani-Moghadam, J. and Zarei, A. 2025. Calcium and silicon nanofertilizers improved morphological attributes and fatty acid composition in olive; an insight into synergistic interaction between these elements. BMC Plant Biology, 25(997), pp.1-16.  DOI: 10.1186/s12870-025-07027-2
 
 
Farag, K.M., Nagy, N.M.N., El-Sheikh, M.H. and Abada, H.S. 2018. Reducing cracking and enhancing coloration and quality of wonderful pomegranates cultivar by safe treatments. Zagazig Journal of Agricultural Research, 45(4), pp.1245-1256. DOI:10.21608/zjar.2018.48569
 
 
Faraji, S. and Karami, S. 2024. Spatial distribution of pomegranate aril paleness and its relationship with some environmental and non-environmental factors using geographic information system (GIS). Iranian Journal of Horticultural Science, 55(3), pp.495-513 (in Persian). DOI: 10.22059/ijhs.2024.372626.2156
 
 
Faraji, S., Naeimi, M., Keikhaei, F., Sheikhi, M. and Mir Abdulhaqh Hezaveh, A. 2019. Aril paleness disorder in pomegranate (Punica granatum L.) and its reduction strategies. Extension Journal of Pomegranate, 1(2), pp.21–28 (in Persian).
 
 
Gharaghani, A., Ghasemi Soloklui, A.A., Oraguzie, N. and Zare, D. 2017. Pollen source influences fruit quality, aril properties, and seed characteristics in pomegranate. International Journal of Fruit Science, 17, pp.333–348. DOI: 10.1080/15538362.2017.1318733
 
 
Ghasemi-Soloklui, A.A., Kordrostami, M. and Gharaghani, A. 2023. Environmental and geographical conditions influence color, physical properties, and physiochemical composition of pomegranate fruits. Scientific Reports, 13(1), e15447. DOI: 10.1038/s41598-023-42749-z
 
 
Hasani, M., Zamani, Z., Savaghebi, G. and Fatahi, R. 2012. Effects of zinc and manganese as foliar spray on pomegranate yield, fruit quality and leaf minerals. Journal of Soil Science and Plant Nutrition, 12, pp.471–480. DOI: 10.4067/S0718-95162012005000009
 
 
Hosein-Beigi, M., Zarei, A., Rostaminia, M. and Erfani-Moghadam, J. 2019. Positive effects of foliar application of Ca, B and GA3 on the qualitative and quantitative traits of pomegranate (Punica granatum L.) cv. ‘Malase-Torshe-Saveh’. Scientia Horticulturae, 254, pp.40-47. DOI: 10.1016/j.scienta.2019.04.081
 
 
Jezek, M., Allan, A.C., Jones, J.J. and Geilfus, C.M. 2023. Why do plants blush when they are hungry? New Phytologist, 239(2), pp.494-505. DOI: 1111/nph.18833
 
 
Kandylis, P. and Kokkinomagoulos, E. 2020. Food applications and potential health benefits of pomegranate and its derivatives. Foods, 9(2), e122. DOI: 10.3390/foods9020122
 
 
Karami, K., Erfani-Moghadam, J., Bazgir, M. and Khademi, O. 2019. Effect of gibberellic acid and zinc sulfate spraying on fruit cracking and quantitative and qualitative characteristics of pomegranate cv. ‘Malase Saveh’. Iranian Journal of Horticultural Science, 52, pp.317-328 (in Persian). DOI: 10.22059/ijhs.2020.273643.1583
 
 
Karami, S. and Faraji, S. 2025. The effect of foliar spraying of iron, zinc and calcium in the stages of fruit maturity on the incidence and severity of pomegranate (Punica granatum L.) aril paleness. Journal of Horticultural Science, 39(1), pp.139–153 (in Persian). DOI: 10.22067/jhs.2024.89090.1366
 
 
Kavand, M., Arzani, K., Barzegar, M. and Mirlatifi, M. 2017. Effects of sunscreen, kaolin application, fruit thinning and supplementary irrigation on the aril browning disorder of pomegranate cv. Malase Torshe Saveh. Seed and Plant Production, 33, pp.85–112 (in Persian). DOI:10.22092/sppj.2017.113760
 
 
Kavand, M., Narjesi, V. and Faraji, S. 2018. Pomegranate orchards management
with aril whitening or browning disorder. Technical Publication. Agricutural Research, Education and Extension Organization, Ministry of Agriculture – Jahad, Iran. 18 pp. (in Persian).
 
 
Khademi, O., Zarei, A. and Naji, A. 2025. Molecular basis of aril paleness disorder in pomegranate fruit: Insights from anthocyanin biosynthesis genes. Tropical Plant Biology, 18, e70. DOI: 10.1007/s12042-025-09438-9
 
 
Kobayashi, S., Ishimaru, M., Ding, C.K., Yakushiji, H. and Goto, N. 2001. Comparison of UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) gene sequences between white grapes (Vitis vinifera) and their sports with red skin. Plant Science, 160(3), pp.543-550. DOI: 10.1016/s0168-9452(00)00425-8
 
 
Liang, J. and He, J. 2018. Protective role of anthocyanins in plants under low nitrogen stress. Biochemical and Biophysical Research Communications, 498(4), pp.946-953. DOI: 10.1016/j.bbrc.2018.03.087
 
 
Melgarejo-Sánchez, P., Núñez-Gómez, D., Martínez-Nicolás, J.J., Hernández, F., Legua, P. and Melgarejo, P. 2021. Pomegranate variety and pomegranate plant part, relevance from bioactive point of view: A review. Bioresources and Bioprocessing, 8(1), e2. DOI: 10.1186/s40643-020-00351-5
 
 
Mirdehghan, S.H. and Vatanparast, G. 2013. Avoiding the paleness of pomegranate arils by preharvest application of salicylic acid and potassium sulfate. Acta Horticulturae, 1012, pp.815–819. DOI: 10.17660/ActaHortic.2013.1012.110
 
 
Mirdehghan, S.H., Vatanparast, G., Karim, H.R. and Vazifeshenas, M.H. 2012. Preharvest foliar application of methyl jasmonate, salicylic acid and potassium sulfate on improving the quality of pomegranate fruit. CIHEAM: Options Méditerranéennes, 103, pp.183-189.
 
 
Moradinezhad, F. and Ranjbar, A. 2024. Foliar application of fertilizers and plant growth regulators on pomegranate fruit yield and quality: A review. Journal of Plant Nutrition, 47(5), pp.797-821. DOI: 10.1080/01904167.2023.2280152
 
 
Narjesi, V. 2021. Effects of different shade netting treatments on some quantitative and qualitative characteristics of pomegranate fruits cv. Malas-e-Saveh. Journal of Agricultural Science and Sustainable Production, 31(1), pp.275-293 (in Persian). DOI: 10.22034/saps.2021.12815
 
 
Olyaie Torshiz, A., Goldansaz, S.H., Motesharezadeh, B., Askari, M.A. and Zarei, A. 2020. The influence of fertilization on pomegranate susceptibility to infestation by Ectomyelois ceratoniae. Internationa Journal of Fruit Science, 20(3), pp.1156-1173. DOI: 10.1080/15538362.2020.1778602 
 
 
Oren-Shamir, M. 2009. Does anthocyanin degradation play a significant role in determining pigment concentration in plants? Plant Science, 177(4), pp.310–316. DOI: 10.1016/j.plantsci.2009.06.015
 
 
Rakić, V. and Poklar Ulrih, N. 2021. Influence of pH on color variation and stability of cyanidin and cyanidin 3-O-β-glucopyranoside in aqueous solution. CyTA - Journal of Food, 19, pp.174–182. DOI: 10.1080/19476337.2021.1874539
 
 
Ramezani, M., Rahemi, M. and Ramzanian, A. 2022. Application of colored nets to prevent sunburn and increase pomegranate fruit quality. Iran Agricultural Research, 40(2), 1-8. DOI: 10.22099/iar.2021.41274.1451
 
 
Schaart, J.G., Dubos, C., Romero De La Fuente, I., van Houwelingen, A.M.M.L., de Vos, R.C.H., Jonker, H.H. Xu, W., Routaboul, J.M., Lepiniec, L. and Bovy, A.G. 2013. Identification and characterization of MYB‐bHLH‐WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria × ananassa) fruits. New Phytologist, 197(2), pp.454-467. DOI: 10.1111/nph.12017
 
 
Sedaghat, S., Rahemi, M. and Jafari, M. 2021. Effects of soil and water salinity on aril whitening in pomegranate. Research in Pomology, 6(1), pp.121–128. DOI: 10.30466/rip.2021.121091
 
 
Seeram, N.P., Zhang, Y., Reed, J.D., Krueger, C.G. and Vaya, J. 2006. Pomegranate phytochemicals. Pp. 3-30. In: Seeram, N.P., Schulman, R.N. and Heber, D. (eds.) Pomegranates: Ancient Roots to Modern Medicine. CRC Press.
 
 
Shivashankar, K.S., Singh, H. and Sumathi, M. 2012. Aril browning in pomegranate (Punica granatum L.) is caused by the seed. Current Science, 103(1), pp.26–28.
 
 
Stiletto, A., Giampietri, E. and Trestini, S. 2020. Heterogeneity in consumer preferences for ready-to-eat pomegranate: an empirical study in Italy. British Food Journal, 122(12), pp.3869–3884. DOI: 10.1108/BFJ-08-2019-0655
 
 
Tabar, S.M., Tehranifar, A., Davarynejad, G.H., Nemati, S.H. and Zabihi, H.R. 2009. Aril paleness, new physiological disorder in pomegranate fruit (Punica granatum): Physical and chemical changes during exposure of fruit disorder. Horticultural Environment and Biotechnology, 50(3), pp.300–307.
 
 
Tadayon, M.S. 2023. Instruction for dealing with the complication of pomegranate aril browning. Technical Publication No. 631. Ministry of Agriculture- Jahad of Iran. 75 pp. (in Persian).
 
 
Tadayon, M.S. and Hosseini, S.M. 2021. 24-Epibrassinolie enhances the effect of calcium and boron on amelioration of aril browning disorder in pomegranate (Punica granatum cv. ‘Rabab’). Journal of Soil Science and Plant Nutrition, 21, pp.1679-1688. DOI: 10.1007/s42729-021-00471-7
 
 
Wu, X., Gong, Q., Ni, X., Zhou, Y. and Gao, Z. 2017. UFGT: the key enzyme associated with the petals variegation in Japanese apricot. Frontiers in Plant Science, 8, e108. DOI:10.3389/fpls.2017.00108
 
 
Zarei, A. 2017. Biochemical and pomological characterization of pomegranate accessions in Fars province of Iran. Sabrao Journal of Breeding and Genetic, 49(2), pp.155–167.
 
 
Zarei, A. and Sahraroo, A. 2018. Molecular characterization of Punica granatum L. accessions from Fars province of Iran using microsatellite markers. Horticultural Environment and Biotechnology, 59, pp.239–249. DOI: 10.1007/s13580-018-0019-x
 
 
Zarei, A., Erfani-Moghadam, J., Hashemi, S. and Shirmardi, A. 2024a. Effect of foliar application of silicon and potassium nanoparticles on the fatty acid composition of olive oil cv. Zard. Seed and Plant, 39, pp.597–619. DOI: 10.22092/spj.2024.366669.1375
 
 
Zarei, A., Khademi, O. and Erfani-Moghadam, J. 2024b. Differential effects of environmental conditions on the commercially important attributes and postharvest quality of pomegranate fruit. Acta Physiologiae Plantarum, 46, 104. DOI: 10.1007/s11738-024-03724-x
 
 
Zarei, A., Zamani, Z., Fatahi, R., Mousavi, A., Salami, S.A., Avila, C. and Canovas, F.M. 2016. Differential expression of cell wall related genes in the seeds of soft- and hard-seeded pomegranate genotypes. Scientia Horticulturae, 205, pp.7–16.  DOI: 10.1016/j.scienta.2016.03.043
 
 
Zhang, P. and Zhu, H. 2023. Anthocyanins in plant food: current status, genetic modification, and future perspectives. Molecules, 28(2), e866DOI: 10.3390/molecules28020866