ارزیابی برهمکنش ژنوتیپ × محیط برای عملکرد و پایداری عملکرد علوفه هیبریدهای امیدبخش سورگوم علوفه‌ای (Sorghum bicolor (L.) Moench) با استفاده از تجزیه AMMI

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، بخش تحقیقات ذرت وگیاهان علوفه ای، مؤسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

2 استادیار، بخش تحقیقات ذرت وگیاهان علوفه ای، مؤسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

3 دانشیار، بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گلستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، گرگان، ایران.

4 استادیار، بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان لرستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، بروجرد، ایران.

5 استادیار، بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان مازندران، سازمان تحقیقات، آموزش و ترویج کشاورزی، ساری، ایران.

6 استادیار، بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی صفی‌آباد، سازمان تحقیقات، آموزش و ترویج کشاورزی، دزفول، ایران.

چکیده

این پژوهش با هدف ارزیابی برهمکنش ژنوتیپ × محیط برای عملکرد و پایداری عملکرد علوفه ی یازده هیبرید امیدبخش سورگوم علوفه‌ای و رقم اسپیدفید (به عنوان شاهد) در پنج ایستگاه تحقیقات کشاورزی (کرج، بروجرد، گرگان، دزفول و ساری) در دو فصل رشد 1402 و 1403 در قالب طرح بلوک‌های کامل تصادفی با سه تکرار اجرا شد. تجزیه واریانس مرکب داه ها نشان داد که برهمکنش ژنوتیپ × مکان × سال بر عملکرد علوفه تر و خشک در سطح احتمال یک درصد معنی‌دار بود. مقایسه میانگین ها نشان داد که هیبریدهای KHFS3 و KHFS10 به‌ترتیب با 145/5و 141/3تن در هکتار بیشترین عملکرد علوفه تر را داشتند. بیشترین عملکرد علوفه خشک (35/2 تن در هکتار) نیز متعلق به هیبرید KHFS3 بود که 12/5درصد نسبت به رقم شاهد (اسپید فید) برتری داشت. محیط، ژنوتیپ و برهمکنش آنها به‌ترتیب 68/57، 9/23و 22/19درصد از کل تغییرات مشاهده شده مربوط به عملکرد علوفه خشک و به‌ترتیب 61/46، 87/۲۰ و 66/۱۷ درصد از کل تغییرات مشاهده شده مربوط به عملکرد علوفه تر را توجیه کردند. بررسی برهمکنش ژنوتیپ × محیط با استفاده از روش تجزیه AMMI نشان داد که دو مؤلفه اصلی مدل معنی‌دار بودند و به‌ترتیب 71/40و 17/61درصد از واریانس برهمکنش را توجیه کردند. بر اساس ارزش پایداری امی (ASV) و میانگین وزنی نمرات مطلق (WAAS) هیبریدهای KHFS5 و KHFS3 به‌ترتیب بیشترین پایداری عملکرد علوفه خشک و تر را نشان دادند. بر اساس نتایج تجزیه گرافیکی، هیبریدهای KHFS3 و KHFS10 به‌ترتیب به‌عنوان ژنوتیپ‌های برتر برای عملکرد علوفه تر و علوفه خشک با پایداری عملکرد بالا شناسایی شدند. این هیبریدها با عملکرد علوفه و سازگاری بالا، گزینه‌های مناسبی برای کشت در اقلیم‌های هدف کشور می باشند و می‌توانند در برنامه‌های به نژادی سورگوم علوفه ای نیز برای بهبود عملکرد علوفه مورد استفاده قرار گیرند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Genotype × Environment Interaction for Forage Yield and Yield Stability of Forage Sorghum (Sorghum bicolor (L.) Moench) Promising Hybrids Using AMMI Analysis

نویسندگان [English]

  • A. Khazaei 1
  • F. Golzardi 2
  • M .T. Fyzbakhsh 3
  • M. Shahverdi 4
  • H. R. Ghorbani 5
  • A. A. Shoushi Dezfuli 6
1 Associate Professor, Maize and Forage Crops Research Department, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.
2 Assistant Professor, Maize and Forage Crops Research Department, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.
3 Associate Professor, Field and Horticultural Sciences Crops Research Department, Golestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Gorgan, Iran.
4 Assistant Professor, Field and Horticultural Sciences Crops Research Department, Lorestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Borujerd, Iran.
5 Assistant Professor, Field and Horticultural Sciences Crops Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Sari, Iran.
6 Assistant Professor, Field and Horticultural Sciences Crops Research Department, Safiabad Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Dezful, Iran.
چکیده [English]

This study evaluated genotype × environment interaction for forage yield and yield stability of 11 promising hybrids of forage sorghum along with Speedfeed cultivar (as commercial check) using randomized complete block design with three replications in five locations; Karaj, Borujerd, Gorgan, Dezful, and Sari in 2023 and 2024 growing seasons. Combined analysis of variance showed significant genotype × location × year interaction (P ≤ 0.01) for fresh and dry forage yield. Hybrids KHFS3 and KHFS10 had the highest total fresh forage yield of 145.5 and 141.2 t ha-1, respectively. The maximum dry forage yield (35.2 t ha-1) was also belonged to hybrid KHFS3, represented 12.5% relative advantage compared to the check cultivar. Environment, genotype, and genotype × environment (G × E) interaction explained 68.57%, 9.23%, and 22.19% of the total observed variation in dry forage yield, and 61.46%, 20.87%, and 17.66% of the total variation in fresh forage yield, respectively. Examination of the genotype × environment interaction using AMMI analysis revealed that the first two principal components interaction were significant, explaining 71.40% and 17.61% of the G×E variation, respectively. Based on the AMMI stability value (ASV) parameter and weighted average of absolute scores (WAAS), hybrids KHFS5 and KHFS3 exhibited the highest stability for dry and fresh forage yield, respectively. According to results of graphical analysis, hybrids KHFS3 and KHFS10 were identified as superior hybrids for fresh and dry forage production, respectively, with high yield and yield stability. These hybrids, with high adaptability and forage yield were identified suitable for being grown in target environments in Iran, and can also be utilized in forgae sorghum breeding programs to improve forage yield.
 
Keywords: Sorghum, AMMI stability value, dry forage yield, fresh forage yield, graphical analysis.
Introduction
Forage sorghum (Sorghum bicolor L. Moench) is and important summer forage crop used for fresh and dry forage and silage, and its productivity is highly influenced by genotype × environment (G×E) interactions (Khazaei et al., 2023b). Multivariate approaches such as AMMI (Additive Main effects and Multiplicative Interaction) and AMMI-based stability parameters (e.g. ASV) are widely used to dissect these interactions and identify high-yielding and yield-stable genotypes (e.g., Al-Naggar et al., 2018;
Pour-Aboughadareh et al., 2022). Recent studies comparing AMMI and GGE biplot approaches have emphasized AMMI’s effectiveness at partitioning main effects and revealing interaction structure, while combined ANOVA remains essential to detect significance of G, E and G × E components (Pour-Aboughadareh et al., 2022; Khazaei et al., 2023a). However, few studies have evaluated newly bred forage sorghum hybrids across different agro-ecological zones of Iran to identify hybrids with both high forage yield and yield stability in contrasting environments. The present study aimed to evaluate G × E interaction patterns and to identify promising and yield-stable of forage sorghum hybrids in five locations using combined analysis of variance and AMMI model.
 
Materials and Methods
Eleven promising forage sorghum hybrids (KHFS1-KHFS11) and Speedfeed as commercial check cultivar were evaluated using randomized complete block design with three replications at five locations; Karaj, Borujerd, Gorgan, Dezful and Sari in two growing seasons (2023 and 2024). Each experimental plot consisted of four four meters long rows with 60 centimeters row spacing and eight centimeters, within-row, plant spacing. Fresh and dry forage yield (first and second cuts and total), plant height and stem diameter in the first and second cuts were measured and recorded. Combined analysis of variance across years and locations quantified main and interaction effects. AMMI model was used to characterize interaction patterns. The AMMI stability value (ASV) was computed to rank hybrids yield stability. Data processing and analysis of variance were performed using SAS 9.0. The AMMI analysis and biplots were generated using the “metan” package in R software.
 
Results and Discussion
Combined analysis of variance showed significant genotype × location × year interaction (P ≤ 0.01) for fresh and dry forage yield, indicating substantial differences in performance of hybrids across sites and growing seasons. For dry forage yield, environment accounted for 68.57% of total observed variance, while genotype and G × E contributed 9.23% and 22.19%, respectively; and for fresh forage yield, these values were 61.46%, 20.87%, and 17.66%, respectively. Mean forage yield ranking identified KHFS3 and KHFS10 as top hybrids for total fresh forage yield (145.5 and 141.2 t ha-1, respectively), compared to cv. Speedfeed (122.6 t ha-1). For total dry forage yield KHFS3 attained the highest mean yield (35.2 t ha-1) compared to 31.3 t ha-1 for the check cultivar.
The AMMI model identified the first two IPCAs as significant, explaining 71.40% and 17.61% of G × E variance for dry yield, and 50.08% and 30.19% for fresh yield, confirming a structured interaction suitable for biplot examination and interpretation (Khazaei et al., 2023b). Based on AMMI stability value (ASV) and weighted average of absolute scores (WAAS), hybrid KHFS5 exhibited the highest yield stability for dry forage yield (ASV = 0.731, WAAS = 0.176), whereas KHFS3 was the most yield-stable hybrid for fresh yield (ASV = 0.576, WAAS = 0.306). In addition, the hybrids KHFS2, KHFS5, and KHFS11 showed high yield stability for both fresh and dry forage yield.
Environment-specific rankings identified KHFS3 as the top hybrid in four locations for fresh forage yield, underscoring the utility of integrating mean performance, ASV, and WAAS for selection (Al-Naggar et al., 2018; Khazaei et al., 2023a). Biplots highlighted KHFS3 and KHFS10 as superior genotypes for fresh and dry forage yield, respectively, with high yield and yiled stability. Overall, the ANOVA-AMMI framework effectively delineated high-yielding and yield stable forage sorghum hybrids. The hybrids with high adaptability and forage yield were identified suitable for being grown in target environments in Iran, and can also be utilized in forgae sorghum breeding programs to improve forage yield.
 
References
Al-Naggar, A.M.M., Abd El-Salam, R.M., Asran, M.R. and Yaseen, W. 2018. Yield adaptability and stability of grain sorghum genotypes across different environments in Egypt using AMMI and GGE-biplot models. Annual Research & Review in Biology, 23(3), pp.1-16. DOI: 10.9734/ARRB/2018/39491
Khazaei, A., Golzardi, F., Ghasemi, A., Tabatabaei, S.A., Nazari, L., Shahverdi, M., Mokhtarpour, H. and Shariati, A. 2023b. Performance and stability analysis of forage sorghum [Sorghum bicolor (L.) Moench] genotypes targeted to arid and semi-arid environments. Cereal Research Communications, 51(3), pp.729-736. DOI: 10.1007/s42976-022-00339-1
Khazaei, A., Golzardi, F., Torabi, M., Feyzbakhsh, M.T., Azarinasrabad,
A., Nazari, L., Ghasemi, A. and Mottaghi, M. 2023a. GGE biplot vs. AMMI analysis of promising sorghum lines in the warm-temperate regions of Iran. Journal of Crop Improvement, 37(4), pp.506-522. DOI: 10.1080/15427528.2022.2113488
Pour-Aboughadareh, A., Khalili, M., Poczai, P. and Olivoto, T. 2022. Stability indices to deciphering the genotype-by-environment interaction (GEI) effect: An applicable review for use in plant breeding programs. Plants, 11(3), 414. DOI: 10.3390/plants11030414

کلیدواژه‌ها [English]

  • Sorghum
  • AMMI stability value
  • dry forage yield
  • fresh forage yield
  • graphical analysis
Al-Naggar, A.M.M., Abd El-Salam, R.M., Asran, M.R. and Yaseen, W. 2018. Yield adaptability and stability of grain sorghum genotypes across different environments in Egypt using AMMI and GGE-biplot models. Annual Research & Review in Biology, 23(3), pp.1-16. DOI: 10.9734/ARRB/2018/39491
 
 
Basafa, M. , Taherian, M. and Beheshti, A. 2015. Stability analysis for forage yield in sorghum lines. Applied Field Crops Research, 28(107), pp.99-107. (in Persian). DOI: 10.22092/aj.2015.105710
 
 
Bocianowski, J., Warzecha, T., Nowosad, K. and Bathelt, R. 2019. Genotype by environment interaction using AMMI model and estimation of additive and epistasis gene effects for 1000-kernel weight in spring barley (Hordeum vulgare L.). Journal of Applied Genetics, 60(2), pp.127-135. DOI: 10.1007/s13353-019-00490-2
 
 
Etaati, M., Ardakani, M.R., Bagheri, M., Paknejad, F. and Golzardi, F. 2023. Grain yield adaptability and stability of quinoa (Chenopodium quinoa Willd.) genotypes using different stability indices. Journal of Crop Ecophysiology, 17(65), pp.1-14. (in Persian). DOI: 10.30495/JCEP.2023.1935024.1815
 
 
Farshadfar, E. and Sutka, J. 2006. Biplot analysis of genotype-environment interaction in durum wheat using the AMMI model. Acta Agronomica Hungarica, 54(4), pp.459-467. DOI: 10.1556/AAgr.54.2006.4.8
 
 
Feyzbakhsh, M.T. 2016. Effect of plant density on some morphological traits and quantitative and qualitative yeild of forage sorghum hybrids in Golestan province. Seed and Plant Production Journal, 32(2), pp.223-237. (in Persian). DOI: 10.22092/sppj.2016.113080
 
 
Gauch, H.G. 1988. Model selection and validation for yield trials with interaction. Biometrics, 44(3), pp.705-715. DOI: 10.2307/2531585
 
 
Gauch, H.J., 1992. Statistical analysis of regional yield trials: AMMI analysis of factorial designs. Elsevier Science. Amsterdam, Netherlands. 278 pp.
 
 
Gholami, H., Khazaei, A., Golzardi, F. and Amirsadeghi, M. 2023. Evaluation of forage yield and quality in the local and foreign cultivars, lines, and hybrids of forage sorghum [Sorghum bicolor (L.) Moench]. Animal Science Research, 32(4), pp.133-156. (in Persian). DOI: 10.22034/as.2021.13882
 
 
Jahromi, M.H.M.A., Khodarahmi, M., Mohammadi, A.R. and Mohammadi, A. 2011. Stability analysis for grain yield of promising durum wheat genotypes in southern warm and dry agro-climatic zone of Iran. Iranian Journal of Crop Sciences, 13(3), pp.565-579. (in Persian).
 
 
Khazaei, A., Golzardi, F., Shahverdi, M., Nazari, L., Ghasemi, A., Tabatabaei, S.A., Shariati, A. and Mokhtarpour, H. 2022. Evaluation of genotype × environment interaction for forage yield of promising forage sorghum lines (Sorghum bicolor (L.) Moench) using AMMI model. Journal of Crop Breeding, 14(42), pp.177-185. (in Persian). DOI: 10.52547/jcb.14.42.177
 
 
Khazaei, A., Golzardi, F., Torabi, M., Feyzbakhsh, M.T., Azarinasrabad,A., Nazari, L., Ghasemi, A. and Mottaghi, M. 2023a. GGE biplot vs. AMMI analysis of promising sorghum lines in the warm-temperate regions of Iran. Journal of Crop Improvement, 37(4), pp.506-522. DOI: 10.1080/15427528.2022.2113488
 
 
Khazaei, A., Golzardi, F., Ghasemi, A., Tabatabaei, S.A., Nazari, L., Shahverdi, M., Mokhtarpour, H. and Shariati, A. 2023b. Performance and stability analysis of forage sorghum [Sorghum bicolor (L.) Moench] genotypes targeted to arid and semi-arid environments. Cereal Research Communications, 51(3), pp.729-736. DOI: 10.1007/s42976-022-00339-1
 
 
Mohammadi, R., Armion, M., Shabani, A. and Daryaei, A. 2007. Identification of stability and adaptability in advanced durum genotypes using AMMI analysis. Asian Journal of Plant Sciences, 6(8), pp.1261-1268.
 
 
Najafian, G., Kaffashi, A. K. and Jafar-Nezhad, A. 2010. Analysis of grain yield stability in hexaploid wheat genotypes grown in temperate regions of Iran using additive main effects and multiplicative interaction. Journal of Agricultural Science and Technology, 12(2), pp. 213-222.
 
 
Olivoto, T., and Lúcio, A. D. C. 2020. Metan: An R package for multi‐environment trial analysis. Methods in Ecology and Evolution, 11(6), pp.783-789. DOI: 10.1111/2041-210X.13384
 
 
Pour-Aboughadareh, A., Khalili, M., Poczai, P. and Olivoto, T. 2022. Stability indices to deciphering the genotype-by-environment interaction (GEI) effect:An applicable review for use in plant breeding programs. Plants, 11(3), 414. DOI: 10.3390/plants11030414
 
 
Purchase, J.L. 1997. Parametric analysis to describe genotype x environment interaction and yield stability in winter wheat. Ph.D. Thesis. University of the Free State. Bloemfontein, South Africa. 84 pp.
 
 
Shiri, M. 2016. Evaluation of fresh and dry forage yield stability of forage sorghum varieties (Sorghum bicolor L. moench) in different conditions. Journal of Crop Breeding, 8(19), pp.101-108. (in Persian). DOR: 20.1001.1.22286128.1395.8.19.13.8
 
 
Tarakanovas, P. and Ruzgas, V. 2006. Additive main effect and multiplicative interaction analysis of grain yield of wheat varieties in Lithuania. Agronomy Research, 4(1), pp.91-98.
 
 
Tavazoh, M., Habibi, D., Golzardi, F., Ilkaee, M.N. and Paknejad, F. 2024. Effect of drought stress on morpho-physiological characteristics, nutritive value, and water-use efficiency of sorghum [Sorghum bicolor (L.) Moench] varieties under various irrigation systems. Brazilian Journal of Biology, 84, e286121. DOI: 10.1590/1519-6984.286121
 
 
Yan, W., Kang, M.S., Ma, B., Woods, S. and Cornelius, P.L. 2007. GGE biplot vs. AMMI analysis of genotype‐by‐environment data. Crop Science, 47(2), pp.643-653. DOI: 10.2135/ cropsci2006.06.0374