استفاده از رویکرد احتمالات بیزی برای ارزیابی ریسک در انتخاب و توصیه هیبریدهای جدید ذرت (.Zea mays L)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، بخش تحقیقات ذرت و گیاهان علوفه‌ای، موسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

2 استادیار، بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز، ایران.

3 دانشیار، بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی کرمان، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمان، ایران.

4 استادیار، بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران

5 استادیار، بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی کرمانشاه، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمانشاه، ایران.

6 استادیار، بخش تحقیقات ذرت و گیاهان علوفه‌ای، موسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

چکیده

عملکرد دانه یک رقم ذرت تابع اثر ژنوتیپ، محیط و برهمکنش ژنوتیپ × محیط است. در این پژوهش، برای بررسی برهمکنش ژنوتیپ × محیط، از روشی استفاده شد که در آن روش های احتمالات بیزی و روش‌های تحلیل سازگاری و پایداری عملکرد در یک چارچوب واحد تلفیق شده است. برای این منظور، داده های 20 هیبرید امیدبخش ذرت به همراه دو شاهد تجاری (هیبریدهای H21 و H22) که در قالب طرح بلوک‌های کامل تصادفی با چهار تکرار در پنج ایستگاه تحقیقاتی (کرج، شیراز، کرمانشاه، کرمان و مشهد) در سال‌های 1402 و 1403 ارزیابی شدند، استفاده شد. در شدت انتخاب تعریف‌شده 20 درصد، هیبرید‌های H15،H10  و H17 بالاترین احتمال حاشیه‌ای عملکرد دانه برتر را داشتند، به طوری­که H15 دارای احتمال بالایی برای برتری نسبت به هر هیبریدی، از جمله ارقام شاهد بود که نشان‌دهنده مناسب بودن آن برای توصیه در مناطق ارزیابی‌شده بود. همچنین هیبرید H10 با دومین رتبه برای عملکرد دانه، دارای احتمالی بیشتر از 0/90برای برتری نسبت به اغلب هیبرید‌ها به جز H15بود. از طرف دیگر، هیبرید‌های H20، H16 و H05 به ترتیب بیشترین احتمال حاشیه‌ای پایداری عملکرد دانه برتر را داشتند. با توجه به احتمال توام عملکرد دانه برتر و پایداری عملکرد، هیبرید‌های H20، H16 و H15 برتری خود را نشان دادند. بنابراین، می توان  نتیجه­ گیری کرد که رویکرد احتمالاتی از پتانسیل خوبی برای انتخاب و توصیه ارقام جدید ذرت برخوردار است.

کلیدواژه‌ها


عنوان مقاله [English]

Employing Bayesian Probabilistic Approach for Risk Assessment in Selection and Recommendation of New Maize (Zea mays L.) Hybrids

نویسندگان [English]

  • M.R SHiri 1
  • A. Estakhr 2
  • H. Najafinezhad 3
  • H. Hassanzadeh Moghaddam 4
  • A. Shirkhani 5
  • R. Ataei 6
1 Associate Professor Maize and Forage Crops Research Department, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.
2 Assistant Professor, Field and Horticultural Crops Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Shiraz, Iran.
3 Associate Professor, Crop and Horticultural Science Research Department, Kerman Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Kerman, Iran.
4 Assistant Professor, Crop and Horticultural Science Research Department, Khorasan-e-Razavi Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Mashhad, Iran.
5 Assistant Professor, Crop and Horticultural Science Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Kermanshah, Iran.
6 Assistant Professor, Maize and Forage Crops Research Department, Seed and Plant Improvement Institute, Agricultural Research Education and Extension Organization, Karaj, Iran.
چکیده [English]

Multi-environments trails are crucial elements in development and recommendation of new crop cultivars. Crop yield is influenced by genetic, environmental, and genotype × environment interaction (GEI). This study employed a Bayesian probabilistic method to study GEI by integrating adaptation and grain yield stability assessments of 22 maize hybrids within a unified framework. Using grain yield data from 22 maize hybrids tested across five research field stations (Karaj, Shiraz, Kermanshah, Kerman and Mashhad) in two years, genotypes were ranked by success probability under a 20% selection intensity. H15, H10, and H17 hybrids showed the highest marginal probability of superior performance. H15 outperformed all tested hybrids, while H10 exceeded most (p >0.90) except H15. For grain yield stability, H20, H16, and H05 hybrids ranked highest. Combining performance and grain yield stability probabilities, H20, H16, and H15 hybrids were top candidates. The Bayesian approach effectively identified genotypes with high grain yielding and yield stability, providing a robust tool for maize breeding programs. By quantifying probabilistic outcomes, this method enhances decision-making, ensuring precise selection and recommendation of maize hybrids tailored for target environments.
 
Keywords: Maize, multi-environment trial, probability, genotype × environment interaction, grain yield stability.
Introduction
Genotype × environment interaction (GEI) explains how genotypes perform across different environments, which can be either simple (no change in genotype rankings) or complicated (rankings change inversely). Complicated GEI challenges plant breeders, as it indicates instability in performance of genotype, making cultivar recommendations difficult. To address this challenge, yield stability and adaptability analyses are conducted to identify adapted genotypes with high yield and yield stability across environments. Various methods have been proposed, differing in their statistical approaches and adaptability concepts. A novel approach introduced by Dias et al. (2022) introduces a Bayesian probabilistic method, which integrates prior information and ranks genotypes by superiority using selection intensity. This method addresses critical issues, such as the probability of a new genotype outperforming existing ones and the risk of failure in specific environments. By combining information from multi-environment trails, the Bayesian approach provides greater inferential power, enabling more accurate predictions and decision-making in plant breeding programs. This advancement helps breeders to identify adapted genotypes with high yield and yield stability reducing the risks associated with GEI and improving cultivar development. This study aimed to employ Bayesian probabilistic approach for risk assessment in selection and recommendation of new maize (Zea mays L.) hybrids for target environments.
 
Materials and Methods
In this study 20 promising maize hybrids and two commercial hybrids (H21 and H22) were evaluated in five research filed stations (Karaj, Shiraz, Kermanshah, Kerman and Mashhad) over two years (2023 and 2024). The experimental design was randomized complete block design with four replications. Each plot consisted four rows of 6.12 meters length with 75 centimeter row spacing, and plant density of 78,000 ha-1. Three seeds were planted in each hill, thinned to two plants at the 4-5 leaf stage. Crop management practices including; irrigation, weed control, and fertilization applications, were followed as recommended for each location. Initial statistical analysis involved simple analysis of variance for each environment to assess genotypic variation, experimental precision, and residual variance homogeneity. Then, combined analysis of variance was performed, which revealed significant genotype × environment interaction (GEI). Adaptability and grain yield stability were estimated using the method introduced by Dias et al. (2022) implemented through the ProbBreed package in R.
 
Results and Discussion
Combined analysis of variance revealed that the effects of hybrids, environments, and genotype × environment interaction (GEI) were significant (p < 0.01). This highlights the complication of GEI, and indicated that top-performing hybrids in one environment may not be excel in others, necessitating environment-specific cultivar recommendations over general adaptability. Bayesian probabilistic models were justified for more reliable recommendations.
Hybrid H15 as the most promising, had the highest marginal probability of superior performance. This hybrid outperformed other hybrids, including checks, in seven out of nine environments. Hybrids H10 and H17 also ranked high with 98% and 94% probabilities, respectively, of belonging to the top-performing subset. While hybrid H15 had 71% probability of outperforming over Hybrid H10, as it underperformed in environments E03 and E07, where hybrid H10 and H17 were selected and recommended. At the 20% selection intensity, hybrid H15 was the only hybrid common to both the top-performing (H15, H10, H17, H20, H16) and high grain yield stability (H07, H03, H13, H12, H15) groups. High-performing with high grain yield stability hybrids like H15, H10, and H17 reduce risks of new hybrids selection and recommendation for target environments. These findings are in accordance with results reported by Malikouski et al. (2024) and Miranda et al. (2024), validating the reliability of Bayesian approaches in crop breeding strategies. Using the multi-traits stability index (MTSI), hybrids H15, H11, and H10 were the top-ranked hybrids.
In conclusion, hybrids H15 and H10 combining superior performance, grain yield stability, and adaptability, were identified as the most promising hybrids for recommendation to target environments. Bayesian probabilistic approaches provided precise, reliable tool for hybrids recommendations by directly interpreting genotype performance and grain yield stability across test environments, enhancing decision-making in maize breeding programsu.
 
References
Dias, K.O.G., Santos, J.P.R., Krause, M.D., Piepho, H.-P., Guimarães, L.J.M., Pastina, M.M. and Garcia, A.A.F. 2022. Leveraging probability concepts for cultivar recommendation in multi-environment trials. Theoretical and Applied Genetics, 135(4), pp.1385–1399. DOI: 10.1007/s00122-022-04041-y
Malikouski, R.G., Ferreira, F.M., Chaves, S.F.S., Couto, E.G.O., Dias, K.O.G., and Bhering, L.L. 2024. Recommendation of Tahiti acid lime cultivars through Bayesian probability models. PLOS ONE, 19(3), e0299290. DOI: 10.1371/journal.pone.0299290
Miranda, I.R., Dias, K.O.G., Júnior, J.D.P., Carneiro, P.C.S., Carneiro, J.E.S., Carneiro, V.Q., Souza, E.A., Melo, L.C., Pereira, H.S., Vieira, R.F. and Martins, F.A.D. 2024. Use of Bayesian probabilistic model approach in common bean varietal recommendation. Crop Science, 64(6), pp.3163-3173. DOI: 10.1002/csc2.21340

کلیدواژه‌ها [English]

  • Maize
  • multi-environment trial
  • probability
  • genotype × environment interaction
  • grain yield stability
Annicchiarico, P. 1992. Cultivar adaptation and recommendation from alfalfa trials in Northern Italy. Journal of Genetics and Plant Breeding, 46, pp.269–278.
 
 
Balestre, M., Von Pinho, R.G., Souza, J.C. and Oliveira, R.L.  2009. Genotypic stability and adaptability in tropical maize based on AMMI and GGE biplot analysis. Genetic Molecular Research, 8(4), pp.1311–1322. DOI: 10.4238/vol8-4gmr658
 
 
Bornhofen, E., Benin, G., Storck, L., Woyann, L.G., Duarte, T., Stoco, M.G. and Marchioro, S.V. 2017. Statistical methods to study adaptability and stability of wheat genotypes. Bragantia, 76(1), pp.1–10. DOI: 10.1590/1678-4499.557
 
 
Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P. and Riddell, A. 2017. Stan: A probabilistic programming language. Journal of Statistical Software, 76(1), pp.1-33. DOI: 10.18637/jss.v076.i01
 
 
Chaves, S.F.S., Krause, M.D., Dias, L.A.S., Garcia, A.A.F. and Dias, K.O.G. 2024. ProbBreed: A novel tool for calculating the risk of cultivar recommendation in multi-environment trials. G3 Genes|Genomes|Genetics, 14(3), jkae013. DOI: 10.1093/g3journal/jkae013
 
 
Cotes, J.M., Crossa, J., Sanches, A. and Cornelius, P.L. 2006. A Bayesian approach for assessing the stability of genotypes. Crop Science, 46(6), pp.2654–2665. DOI: 10.2135/cropsci2006.04.0227
 
 
Crossa, J. 2012. From genotype x environment interaction to gene by environment interaction. Current Genomics, 13(3), pp.225–244. DOI: 10.2174/138920212800543066
 
 
Crossa, J., Perez-Elizalde, S., Jarquin, D., Cotes, J.M., Viele, K., Liu, G. and Cornelius, P.L. 2011. Bayesian estimation of the additive main effects and multiplicative interaction model. Crop Science, 51(4), pp.1458–1469. DOI: 10.2135/cropsci2010.06.0343
 
 
Cruz, C.D., Torres, R.A. A. and Vencovsky, R. 1989. An alternative approach to the stability analysis proposed by Silva and Barreto. Brazilian Journal of Genetics, 12(3), pp.567–580.
 
 
Dias, K.O.G., Gezan, S.A., Guimarães, C.T., Parentoni, S.N., Guimarães, P.E.O., Carneiro, N.P., Portugal, A.F., Bastos, E.A., Cardoso, M.J., Anoni, C.O., Magalhães, J.V., Souza, J.C., Guimarães, L.J.M. and Pastina, M.M. 2018. Estimating genotype × environment interaction for and genetic correlations among drought tolerance traits in maize via factor analytic multiplicative mixed models. Crop Science, 58(1), pp.72–83. DOI: 10.2135/cropsci2016.07.0566
 
 
Dias, K.O.G., Santos, J.P.R., Krause, M.D., Piepho, H.P., Guimarães, L.J.M., Pastina, M.M. and Garcia, A.A.F. 2022. Leveraging probability concepts for cultivar recommendation in multi-environment trials. Theoretical and Applied Genetics, 135(4), pp.1385–1399. DOI: 10.1007/s00122-022-04041-y
 
 
Eberhart, S.A. and Russell, W.A. 1966. Stability parameters for comparing varieties. Crop Science, 6(1), pp.36–40. DOI: 10.2135/cropsci1966.0011183X000600010011x
 
 
Eskridge, K.M. 1990. Selection of stable cultivars using a safety first rule. Crop Science, 30(2), pp.369–374. DOI: 10.2135/cropsci1990.0011183X003000020025x
 
 
Fabreti, L.G. and Höhna, S. 2022. Convergence assessment for Bayesian
 phylogenetic analysis using MCMC simulation. Methods in Ecology and Evolution, 13(1), pp. 77–90. DOI: 10.1111/2041-210X.13727
 
 
Finlay, K.W., and Wilkinson, G.N. 1963. The analysis of adaptation in a plant-breeding programme. Australian Journal of Agricultural Research, 14(6),
pp.742–754. DOI: 10.1071/AR9630742
 
 
Gauch, H.G. and Zobel, R.W. 1988. Predictive and postdictive success of
statistical analyses of yield trials. Theoretical and Applied Genetics, 76(1),
pp.1–10. DOI: 10.1007/BF00288824
 
 
Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A. and Rubin, D.B.  2013. Bayesian data analysis.  3rd edition. Chapman and Hall/CRC. 675 pp. DOI: 10.1201/b16018
 
 
Guiver, J. and Snelson, E. 2009. Bayesian inference for Plackett–Luce ranking models. pp.377–384. In Proceedings of the 26th annual international conference on machine learning, Montreal, Quebec, Canada.
 
 
Josse, J., van Eeuwijk, F.A., Piepho, H.P. and Denis, J.B. 2014. Another look
at Bayesian analysis of AMMI models for genotype-environment data. Journal
 of Agricultural, Biological and Environmental Statistics
, 19(2),
pp.240–257. DOI: 10.1007/s13253-014-0168-z
 
 
Lin, C.S. and Binns, M.R. 1988. A method of analyzing cultivar x location x year experiments: A new stability parameter. Theoretical and Applied Genetics, 76(3), pp.425–430. DOI: 10.1007/BF00265344
 
 
Luce, R.D. 1959. Individual choice behavior: a theoretical analysis. John Wiley. 153 pp. DOI: 10.1037/14396-000
 
 
Malikouski, R.G., Ferreira, F.M., Chaves, S.F.S., Couto, E.G.O., Dias, K.O.G. and Bhering, L.L. 2024. Recommendation of Tahiti acid lime cultivars through Bayesian probability models. PLOS ONE, 19(3), e0299290. DOI: 10.1371/journal.pone.0299290
 
 
Malosetti, M., Ribaut, J.-M. and van Eeuwijk, F.A. 2013. The statistical analysis of multi-environment data: modeling genotype by environment interaction and its genetic basis. Frontiers in Physiology, 4, pp.1–17. DOI: 10.3389/fphys.2013.00044
 
 
Miranda, I.R., Dias, K.O.G., Júnior, J.D.P., Carneiro, P.C.S., Carneiro, J.E.S., Carneiro, V.Q., Souza, E.A., Melo, L.C., Pereira, H.S., Vieira, R.F. and Martins, F.A.D. 2024. Use of Bayesian probabilistic model approach in common bean varietal recommendation. Crop Science, 64(6), pp.3163-3173. DOI: 10.1002/csc2.21340
 
 
Nardino, M., Baretta, D., Carvalho, I.R., Olivoto, T., Follmann, D.N., Vincius, J.S., Ferrari, M., de Pelegrin, A.J., Konflanz, V.A. and de Souza, V.Q. 2016. Restricted maximum likelihood/best linear unbiased prediction (REML/BLUP) for analyzing the agronomic performance of corn. African Journal of Agricultural Research, 11(48), pp.4864-4872. DOI: 10.5897/AJAR2016.11691
 
 
Olivoto, T., Lúcio, A.D.C., da Silva, J.A.G., Marchioro, V.S., de Souza, V.Q. and Jost, E. 2019. Mean performance and stability in multi-environment trials I: combining features of AMMI and BLUP techniques. Agronomy Journal, 111(6), pp.2949-2960. DOI: 10.2134/agronj2019.03.0220
 
 
Olivoto, T., Nardino, M., Carvalho, I.R., Follmann, D.N., Ferrari, M., Szareski, V.J., de Pelegrin, A.J. and de Souza, V.Q. 2017. REML/BLUP and sequential path analysis in estimating genotypic values and interrelationships among simple maize grain yield-related traits. Genetics and Molecular Research, 16(1), pp.1-19. DOI: 10.4238/gmr16019525
 
 
Piepho, H.P., Möhring, J., Melchinger, A.E. and Büchse, A. 2008. BLUP for phenotypic selection in plant breeding and variety testing. Euphytica, 161(1), pp.209–228. DOI: 10.1007/s10681-007-9449-8
 
 
Piepho, H.-P. 1997. Analyzing genotype-environment data by mixed models with multiplicative terms. Biometrics, 53(2), pp.761–766. DOI: 10.2307/2533976
 
 
Plackett, R.L. 1975. The analysis of permutations. Journal of the Royal Statistical Society Series C: Applied Statistics, 24(2), pp.193–202.
 
 
Plaisted, R.L. and Peterson, L.C. 1959. A technique for evaluating the ability of selections to yield consistently in different locations and seasons. American Potato Journal, 36, pp.381-385. DOI: 10.1007/BF02852735
 
 
Przystalski, M. and Lenartowicz, T. 2023. Organic system vs. conventional-A Bayesian analysis of Polish potato post-registration trials. The Journal of Agricultural Science, 161(1), pp.97–108. DOI: 10.1017/S0021859623000084
 
 
R Core Team. 2023. R: A language and environment for statistical computing. R Foundation for Statistical Computing. pp. 3921.
 
 
Shiri, M., Moharramnejad, S., Estakhr, A., Fareghi, Sh., Najafinezhad, H., Khavari Khorasani, S., Afarinesh, A., Anvari, K. and Eshraghi-Nejad, M. 2024. Determining the stability of new maize hybrids with WAASBY and MTSI indices. Journal of Crop Breeding, 16(2), pp.14-28 (in Persian). DOI: 10.61186/jcb.16.2.14
 
 
Shukla, G.K. 1972. Some statistical aspects of partitioning genotype environmental components of variability. Heredity, 29(2), pp.237–245. DOI: 10.1038/hdy.1972.87
 
 
Smith, A.B. and Cullis, B.R. 2018. Plant breeding selection tools built on factor analytic mixed models for multi-environment trial data. Euphytica, 214(8), pp.1-19. DOI: 10.1007/s10681-018-2220-5
 
 
Smith, A.B., Cullis, B.R. and Thompson, R. 2001. Analyzing variety by environment data using multiplicative mixed models and adjustments for spatial field trend. Biometrics, 57(4), pp.1138–1147. DOI: 10.1111/j.0006-341X.2001.01138.x
 
 
Smith, A.B., Cullis, B.R. and Thompson, R. 2005. The analysis of crop cultivar breeding and evaluation trials: An overview of current mixed model approaches. The Journal of Agricultural Science, 143(6), pp.449–462. DOI: 10.1017/S0021859605005587
 
 
Toler, J.E. 1990. Patterns of genotypic performance over environmental arrays. Ph. D. Dissertation. Clemson University. Clemson University. 154 pp.
 
 
Ullman, J.B. 2006. Structural equation modeling: Reviewing the basics and moving forward. Journal of Personality Assessment, 87, pp.35-50. DOI: 10.1207/s15327752jpa8701_03
 
 
van Eeuwijk, F.A., Bustos-Korts, D. and Malosetti, M. 2016. What should students in plant breeding know about the statistical aspects of genotype × environment interactions? Crop Science, 56(5), pp.2119–2140. DOI: 10.2135/cropsci2015.06.0375
 
 
Verma, M.M., Chahal, G.S. and Murty, B.R. 1978. Limitations of conventional regression analysis a proposed modification. Theoretical and Applied Genetics, 53(2), pp.89–91. DOI: 10.1007/BF00817837
 
 
Wricke, G. 1965. Zur berechnung der ökovalenz bei sommerweizen und hafer. Zeitschrift fur Pflanzenzuchtung, 52(2), pp.127–138.
 
 
Yan, W., Hunt, L.A., Sheng, Q. and Szlavnics, Z. 2000. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Science, 40(3), pp.597–605. DOI: 10.2135/cropsci2000.403597x