مقاومت پایه‌های امیدبخش سیب به شته مومی [(Eriosoma lanigerum (Hausmman] در شرایط تغذیه اجباری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، پژوهشکده میوه‌های معتدله و سردسیری، موسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج ایران.

2 استادیار، پژوهشکده میوه‌های معتدله و سردسیری، موسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج ایران.

چکیده

شته مومی [(Eriosoma lanigerum (Hausmman] یکی از آفات خسارت­زای باغات سیب است که می‌تواند تا ۳۰ درصد محصول را کاهش دهد و به طور مستقیم به کیفیت میوه نیز آسیب برساند. این پژوهش باهدف ارزیابی مقاومت ده پایه امید بخش سیب شامل پایه‌های تجاری و بومی، نسبت به شته مومی سیب در شرایط تغذیه اجباری در شرایط گلخانه با دمای ۵ ± 25 درجه سانتی‌گراد، رطوبت نسبی 10 ± 60 درصد و چرخه نوری ۱۴ ساعت روشنایی و ۱۰ ساعت تاریکی در سال­های 1401 و 1402 انجام شد. در این پژوهش، شاخص‌های سرعت تغییرات جمعیت، سطح تعادل جمعیت و احتمال استقرار شته بر روی پایه‌های امید بخش سیب در طول فصل رشد به‌دقت بررسی شدند. نتایج نشان دادند که پایه‌M9op(387) ، به دلیل داشتن سازکارهای آنتی‌زنوز (جلوگیری از استقرار شته) و آنتی‌بیوز (کاهش بقا و باروری شته)، توانستند جمعیت شته را تا ۶۰ درصد کاهش دهند. همچنین، احتمال استقرار شته در پایه‌های مقاوم حدود ۲۰ تا ۳۰ درصد کمتر از پایه‌های حساس‌تر مانند B9op(87) بود. ویژگی‌های فیزیکی نظیر تراکم کرک و ضخامت پوست شاخه نیز به‌عنوان عوامل مؤثر در مقاومت پایه‌ها شناسایی شد. نتایج این پژوهش نشان داد که استفاده از پایه‌های مقاوم می‌تواند به طور مؤثری در مدیریت تلفیقی این آفت سیب مورد استفاده قرار گیرد و راهکاری پایدار برای کنترل شته مومی فراهم کند. یافته‌های این پژوهش می تواند در برنامه‌های به نژادی و گزینش پایه‌های مقاوم سیب مناسب و سازگار با شرایط متنوع اقلیمی در ایران استفاده شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Resistance of Promising Apple Rootstocks to the Woolly Aphid [Eriosoma lanigerum (Hausmman)] under Forced Feeding Conditions

نویسندگان [English]

  • M. Latifian 1
  • D. Atashkar 2
1 Professor, Temperate Fruit Research Center, Horticultural Science Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.
2 Assistant Professor, Temperate Fruit Research Center, Horticultural Science Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.
چکیده [English]

This study aimed to evaluate the resistance of 10 apple rootstocks to the woolly apple aphid [Eriosoma lanigerum (Hausmman)] during 2022 and 2023 growing seasons. This research examined the population growth rate, population equilibrium level, and the likelihood of aphid establishment on 10 apple rootstocks during the growing season. The results showed that M9op(387) rootstock, due to its antixenosis (prevention of aphid establishment) and antibiosis (reduced survival and fertility of aphids) mechanisms, was able to reduce the aphid population by up to 60%. Additionally, the probability of aphid establishment on resistant rootstocks was about 20 to 30% lower than on more susceptible rootstocks like B9op(87). Morphological characteristics, such as lint density and bark thickness, were identified as factors influencing the rootstock's resistance. The findings of this research have great potential for being used in breeding programs for development and selection of resistant apple rootstocks to the wooly apple aphid adapted to different climatic conditions.
 
Keywords: Apple rootstock, susceptible, population indices, morphological characteristics, biological stability, control.
 
Introduction
The woolly apple aphid [Eriosoma lanigerum (Hausmman)], a globally important pest, imposese significant challenges to apple fruit production. Published researches has indicated that infestations can reduce apple yields by 10 to 30 percent, depending on environmental and varietal susceptibility (Adhikari, 2022; Kamusiime et al., 2023).
Chemical controls are widely applied but are costly, cause pesticide resistance, and impose environmental concerns and challenges. Biological control, although effective, are rather slow and have limitations in it immediate effectiveness. Choosing rootstocks resistant to the woolly apple aphid is one of the effective and sustainable approach to control this pest. Resistant rootstocks can prevent the growth and reproduction of aphids and help to reduce the attendant costs of chemical and biological controls.
Rootstocks resistant to the wooly apple aphid can reduce up to 50 to 70 percent of infestation by this pest. Using resistant rootstocks can reduce chemical control costs by 60% (Nicholas et al., 2005). An alternative, choosing sustainable approaches for managing the woolly apple aphids is using resistant rootstocks, as a component of integrated pest mangemnet (IPM) to control the pest. Certain rootstocks exhibit inherent resistance, minimizing aphid establishment and reproduction rates.
This study evaluated the resistance of promising apple rootstocks to the woolly apple aphids under controlled forced-feeding conditions to identify traits associated with resistance mechanisms, and providing insights for improvement of pest management and control through apple breeding programs.
 
Materials and Methods
This experiment was carried out in 2022 and 2023 growing seasons. Ten apple rootstocks including; Azop(385), Azop(386), AZ × M9(285), AZ × M27(85), Azop(285), Azop(286), M9op(387), B9op(87), AZ × M9(185) and Azop(486) were studied . Each one-year-old hybrid rootstock was transplanted into containers filled with a sterilized soil mixture and grown under greenhouse conditions. The glasshouse environmental conditions were maintained at 25°C ± 5°C, 60% ± 10% relative humidity and 14:10 light-dark cycle. The rootstocks were infested, through three wounds created on the stem of each, with 15 adult woolly apple aphids collected from a local orchard.
Wooly apple aphid population metrics including; colony number, colony size, and gall formation were recorded weekly during growing season. Additionally, aphid colony growth rate, population equilibrium and establishment probability levels were calculated. Vegetative traits of apple rootstock were studied using the national guidelines for apple D.U.S tests.
Data analysis was performed using IBM SPSS Statistics 27.0, with resistance comparisons based on rates of aphid establishment, population stability and seasonal changes. For grouping of the rootstocks, based on the levle of resistance to the wooly apple aphid, cluster analysis method and the rootstocks that were similar in level of resistance were grouped in the same group.
 
Results and Discussion
The results indicated significant variability in resistance levels to the wooly apple aphid among the apple rootstocks. Rootstocks M9op(387) demonstrated the highest resistance level, by reducing population growth rates and lower aphid establishment probability in comparison with susceptible rootstocks such as B9op(87) and Azop(486). Specifically, the seasonal population growth rate for M9op(387) averaged 161.81 aphids, whereas B9op(87) had the rate of 255.29 aphids.
The population equilibrium of the woolly aphid colonies was lower in M9op(387) (26.5 colonies) in comparion with more susceptible Azop(486) (28.88 colonies). Morphological charateristics including; lint density and increased bark thickness in M9op(387) and Azop(385) contributed to their antixenotic resistance by deterring aphid colonization. Antibiosis mechanism, such as reduced aphid survival and reproduction, were also observed in the resistant rootstocks. These findings are in accordance with studies by Sandanayaka et al. (2020) and Nicholas et al. (2005) who reported reduced aphid colonization in resistant apple varieties with high lint density.
Antixenosis mechanism reduces the attraction of the rootstocks for aphids, and the mechanism of antibiosis, which is associated with the reduction of survival and reproduction rates of aphids, plays an important role in the resistance of resistant rootstocks. For example, the rootstocks M9op(387)  and Azop(385) reduceed the population of aphids by 60 to 70 percent in comparison with more susceptible rootstocks. The findings of the present study support using resistant rootstocks in apple breeding programs, and encouraging the adoption and application of environmentally sustainable pest control strategies for different climatic conditions.
 
References
Adhikari, U. 2022. Distribution, biology, nature of damage and management of woolly apple aphid, Eriosoma lanigerum (Hausmann) (Hemiptera: Aphididae) in apple orchard: a review. Reviews In Food and Agriculture, 3(2), pp.92-99. DOI: 10.26480/rfna.02.2022.92.99
Kamusiime, E., Nantongo, J. S. and Wacal, C. 2023. Insect pests in apple (Malus domestic Borkh) gardens. GSC Advanced Research and Reviews, 15(1), pp.030-053. DOI: 10.30574/gscarr.2023.15.1.0109
Nicholas, A. H., Spooner-Hart, R. N. and Vickers, R. A. 2005. Abundance and natural control of the woolly aphid Eriosoma lanigerum in an Australian apple orchard IPM program. BioControl, 50, pp.271-291. DOI: 10.1007/s10526-004-0334-2
Sandanayaka, W. R. M., Bus, V. G. M. and Connolly, P. 2005. Mechanisms of woolly aphid [Eriosoma lanigerum (Hausm.)] resistance in apple. Journal of Applied Entomology, 129(9‐10), pp.534-541. DOI: 10.1111/j.1439-0418.2005.01004.x

کلیدواژه‌ها [English]

  • Apple rootstock
  • susceptible
  • population indices
  • morphological characteristics
  • biological stability
  • control
Adhikari, U. 2022. Distribution, biology, nature of damage and management of woolly apple aphid, Eriosoma lanigerum (Hausmann) (Hemiptera: Aphididae) in apple orchard: a review. Reviews in Food and Agriculture, 3(2), pp.92-99. DOI: 10.26480/rfna.02.2022.92.99
 
 
Bus, V. G. M., Chagné, D., Bassett, H. C. M., Bowatte, D., Calenge, F., Celton, J. M., Durel, C. E., Malone, M. T., Patocchi, A., Ranatunga, A. C. and Rikkerink, E. H. A. 2008. Genome mapping of three major resistance genes to woolly apple aphid (Eriosoma lanigerum Hausm.). Tree Genetics & Genomes, 4, pp.223-236. DOI: 10.1007/s11295-007-0103-3
 
 
Cummins, J. N. and Aldwinckle, H. S. 1983. Breeding apple rootstocks. Plant Breeding Reviews, 1, pp.294-394. DOI: 10.1002/9781118060988
 
 
Dahms, R. G. 1972. Techniques in the evaluation and development of host‐plant resistance. Journal of Environmental Quality, 1(3), pp.254-259. DOI: 10.2134/jeq1972.00472425000100030010x
 
 
Dampc, J., Mołoń, M., Durak, T. and Durak, R. 2021. Changes in aphid—plant interactions under increased temperature. Biology, 10(6), 480. DOI: 10.3390/biology10060480
 
 
Dardeau, F., Berthier, A., Feinard-Duranceau, M., Brignolas, F., Laurans, F., Lieutier, F. and Sallé, A. 2015. Tree genotype modulates the effects of water deficit on a plant-manipulating aphid. Forest Ecology and Management, 353, pp.118-125. DOI: 10.1016/j.foreco.2015.05.037
 
 
Entwistle, J. C. and Dixon, A. F. G. 1987. Short‐term forecasting of wheat yield loss caused by the grain aphid (Sitobion avenae) in summer. Annals of Applied Biology, 111(3), pp.489-508. DOI: 10.1111/j.1744-7348.1987.tb02007.x
 
 
Fazio, G., Aldwinckle, H. and Robinson, T. 2013. Unique characteristics of Geneva® apple rootstocks. New York State Fruit Quarterly 1(2), pp.25-28.
 
 
Fazio, G., Robinson, T. L. and Aldwinckle, H. S. 2015. The Geneva apple rootstock breeding program. Plant Breeding Reviews, 39, pp.379-424. DOI: 10.1002/9781119107743.ch8
 
 
Fischer, M. 1996. The Pillnitz apple rootstock breeding methods and selection results. In VI International Symposium on Integrated Canopy, Rootstock, Environmental Physiology in Orchard Systems, 451, pp. 89-98. DOI: 10.17660/ActaHortic.1997.451.6
 
 
Frades, I. and Matthiesen, R. 2010. Overview on techniques in cluster analysis. Bioinformatics Methods in Clinical Research, 593, pp.81-107. DOI: 10.1007/978-1-60327-194-3_5
 
 
Fraley, C. and Raftery, A. E. 2002. Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association, 97(458), pp.611-631.  DOI: 10.1198/016214502760047131
 
 
Gogtay, N. J. and Thatte, U. M. 2017. Principles of correlation analysis. Journal
 of the Association of Physicians of India, 65
(3), pp.78-81. DOI: 412353eaa6232e4fb9241ed0275945ccdd6da9a9
 
 
Kamusiime, E., Nantongo, J. S. and Wacal, C. 2023. Insect pests in apple (Malus domestic Borkh) gardens. GSC Advanced Research and Reviews, 15(1), pp.030-053. DOI: 10.30574/gscarr.2023.15.1.0109
 
 
Khan, A. and Korban, S. S. 2022. Breeding and genetics of disease resistance in temperate fruit trees: challenges and new opportunities. Theoretical and Applied Genetics, 135(11), pp.3961-3985. DOI: 10.1007/s00122-022-04093-0.
 
 
Latifian, M., Atashkar, D. and Ghaemi, R. 2023a. Relative establishment rate and host preference of wooly apple aphid Eriosoma lanigerum (Hausmann, 1802) (Hemiptera: Aphididae) on promising apple hybrid rootstocks. Journal of Entomological Society of Iran, 43(3), pp.233-245. DOI: 10.61186/JESI.43.3.4
 
 
Latifian, M., Atashkar, D., and Ghaemi, R. 2023b. Antibiosis resistance of promising apple rootstocks to woolly aphid [(Eriosoma lanigerum (Hausm.)] under environmental conditions of Karaj in Iran. Seed and Plant Journal, 39(1), pp.120-93. DOI: 10.22092/spj.2023.363992.1331
 
 
Mason, R. L., Gunst, R. F. and Hess, J. L. 2003. Statistical design and analysis of experiments: with applications to engineering and science. 2nd edition. John Wiley & Sons, Inc., Hoboken, NJ, USA. 760 pp. DOI: 10.1002/0471458503.ch11
 
 
Miranda, C., Dapena, E., Urbina, V., Pereira-Lorenzo, S., Errea, P., Moreno, M. A., Urrestarazu, J., Fernandez, M., Ramos-Cabrer, A. M., Diaz-Hernandez, M. B. and Pina, A. 2015. Development of a standardized methodology for phenotypical characterizations in apples. In:  XIV EUCARPIA Symposium on Fruit Breeding and Genetics, 1172, pp.367-370. DOI: 10.17660/ActaHortic.2017.1172.69
 
 
Nalam, V., Louis, J. and Shah, J. 2019. Plant defense against aphids, the pest extraordinaire. Plant Science, 279, pp.96-107. DOI: 10.1016/j.plantsci.2018.04.027
 
 
Nicholas, A. H., Spooner-Hart, R. N. and Vickers, R. A. 2005. Abundance and natural control of the woolly aphid Eriosoma lanigerum in an Australian apple orchard IPM program. BioControl, 50, pp.271-291. DOI: 10.1007/s10526-004-0334-2
 
 
Obrycki, J. J., Krafsur, E. S., Bogran, C. E., Gomez, L. E. and Cave, R. E. 2001. Comparative studies of three populations of the lady beetle predator Hippodamia convergens (Coleoptera: Coccinellidae). Florida Entomologist, 84(1), pp.55-62. DOI: 10.2307/3496663
 
 
Pedigo, L. P. and Rice, M. E. 2006. Entomology and pest management. 6th edition. Upper Saddle River, NJ: Pearson Education. Technology & Engineering. 784 pp.
 
 
Russo, N. L., Robinson, T. L., Fazio, G. and Aldwinckle, H. S. 2007. Field evaluation of 64 apple rootstocks for orchard performance and fire blight resistance. HortScience, 42(7), pp.1517-1525. DOI: 10.21273/HORTSCI.42.7.1517
 
 
Sandanayaka, W. R. M., Bus, V. G. M. and Connolly, P. 2005. Mechanisms of woolly aphid [Eriosoma lanigerum (Hausm.)] resistance in apple. Journal of Applied Entomology, 129(9‐10), pp.534-541. DOI: 10.1111/j.1439-0418.2005.01004.x
 
 
Travis, J. M., Murrell, D. J. and Dytham, C. 1999. The evolution of density–dependent dispersal. Proceedings of the Royal Society of London. Series B: Biological Sciences, 266(1431), pp.1837-1842. DOI: 10.1098/rspb.1999.0854
 
 
van Emden, H. F. and Harrington, R. 2017. Aphids as crop pests. 2nd edition. Wallingford: CABI. 686 pp. DOI: 10.1079/9781780647098.0000