اثر محلول‌پاشی ملاتونین بر برخی صفات مورفولوژیکی و فیزیولوژیکی پایه نارنج در شرایط تنش شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران.

2 گروه علوم باغبانی، دانشگاه کشاورزی و منابع طبیعی ساری، ساری، ایران.

چکیده

شوری خاک یکی از مهمترین تنش‌های محیطی است که باعث کاهش رشد و عملکرد محصولات می‌شود و طیف گسترده‌ای از واکنش ها و علائم فیزیولوژیکی و بیوشیمیایی در گیاهان ایجاد می‌کند. در این پژوهش، اثر محلول‌پاشی با ملاتونین (صفر و 200 میکرومولار) در شرایط شوری (0، 30، 60، 90 و 120 میلی‌مولار کلرید سدیم) بر روی پایه نارنج مورد بررسی قرار گرفت. آزمایش به صورت فاکتوریل در قالب طرح کاملا تصادفی در چهار تکرار در سال 1400-1399 در مزرعه تحقیقاتی دانشگاه کشاورزی و منابع طبیعی ساری انجام شد. نتایج نشان داد بیشتر صفات رشدی، مورفولوژیکی و فیزیولوژیکی تحت تأثیر شوری و محلول‌پاشی ملاتونین قرار گرفتند. برهمکنش شوری × محلول‌پاشی ملاتونین بر طول و عرض برگ، تعداد شاخه نورسته، طول شاخه‌نورسته، طول ریشه، درصد رطوبت و درصد ماده خشک برگ، نشت‌یونی، هدایت روزنه‌ای، میزان تعرق، میزان آسیمیلاسیون، کمبود فشار بخار و عملکرد کوانتومی فتوسنتز معنی‌دار بود. محلول‌پاشی ملاتونین باعث افزایش درصد رطوبت برگ، تعداد شاخه نورسته، میزان آسمیلاسیون، هدایت روزنه‌ای و عملکرد کوانتومی فتوسنتز شد، در حالیکه میزان نشت یونی برگ کاهش یافت. بیشترین عملکرد کوانتومی فتوسنتز مربوط به تیمار شوری صفر و ملاتونین 200 میکرومولار بود، با این حال بیشتر شاخص‌های فیزیولوژیکی با کاربرد ملاتونین در شرایط شوری بهبود یافتند. کاربرد ملاتونین در سطوح مختلف شوری سبب افزایش معنی‌دار طول و عرض برگ شاخه نورسته در مقایسه با شاهد شد. نتایج کلی نشان داد که محلول‌پاشی ملاتونین اثر شوری بر بیشتر شاخص‌های رشدی را کاهش داد و می تواند به عنوان راهکاری مؤثر برای کاهش خسارت ناشی از تنش شوری آب و خاک در پایه نارنج مد نظر قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Foliar Application of Melatonin on Some Morphological and Physiological Traits of Sour Orange Rootstock in Salinity Stress Conditions

نویسندگان [English]

  • A. Ali Khudady 1
  • J. Erfani-Moghadam 1
  • F. Ghanbari 1
  • M. Hadadinejad 2
1 Department of Horticultural Sciences, Faculty of Agriculture, Ilam University, Ilam, Iran.
2 Department of Horticultural Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
چکیده [English]

Soil salinity is one of the major environmental stresses which reduces the growth and yield of crops by affecting wide spectra of physiological and biochemical processes in plants. In this study, effect of foliar application of melatonin levels (0 and 200 μM) under salt levls (0, 30, 60, 90 and 120 mM NaCl) on sour orange rootstock was investigated. The experiment was carried-out as factorial arrangements in completely randomized design with four replications in 2020-21 at the research farm of Sari Agricultural Sciences and Natural Resources University, Sari, Iran. The results showed that most of morphological and physiological characteristics were affected by salinity and foliar application of melatonin. Salinity × foliar application of melatonin interaction effect was significant on most of studied traits including leaf length, leaf width, flush number, flush length, root length, leaf moisture and dry matter contents of leaf, ion leakage, stomatal conductance, transpiration rate, of assimilation rate, vapor pressure deficit and photosynthetic quantum yield. Foliar application of melatonin increased leaf moisture content, flush number, assimilation rate, stomatal conductance and photosynthesis quantum yield, while leaf ion leakage decreased. The highest photosynthetic quantum yield was recorded in 200 µM melatonin and salinity free treatment. Foliar application of melatonin under salinity stress conditions improved most of the physiological parameters. Foliar application of melatonin at different salinity levels caused significant increases in length and width of flush leaves compared to the control. Overall, the results of this study showed that foliar application of melatonin reduced negative effects of salinity stress on growth and physiology of sour orange rootstock, therefore, it can be considered as an effective approach to mitigate the adverse effect of soil and water salinity on sour orange rootstock.

کلیدواژه‌ها [English]

  • Sour orange
  • ion leakage
  • stomatal conductance
  • transpiration rate
  • photosynthesis
Adams, S. N., Ac-Pangan, W. O., and Rossi, L. 2019. Effects of soil salinity on citrus rootstock ‘US-942’physiology and anatomy. HortScience 54 (5): 787-792.
 
 
Alam, A., Ullah, H., Attia, A., and Datta, A. 2020. Effects of salinity stress on growth, mineral nutrient accumulation and biochemical parameters of seedlings of three citrus rootstocks. International Journal of Fruit Science 20 (4): 786-804.
 
 
Ali, M., Kamran, M., Abbasi, G. H., Saleem, M. H., Ahmad, S., Parveen, A., and Fahad, S. 2020. Melatonin-induced salinity tolerance by ameliorating osmotic and oxidative stress in the seedlings of two tomato (Solanum lycopersicum L.) cultivars. Journal of Plant Growth Regulation 40 (5): 1-15.
 
 
Arnao M. B., and Hernández-Ruiz, J. 2013. Growth conditions influence the melatonin content of tomato plants. Food Chemistry 138 (2-3): 1212-1214.
 
 
Arnon, D. I. 1949. Copper enzymes in isolated chloroplast polyphenol oxidase in Beta Vulgaris. Plant Physiology 24 (1): 1-15.
 
 
Bajwa, V. B., Shukla, M. R., Sherif, S. M., Murch, S. J., and Saxena, P. K. 2014. Role of melatonin in alleviating cold stress in Arabidopsis thaliana. Journal of Pineal Research 56 (3): 238-245.
 
 
Bhardway, R., and Signal, G. 1981. Effect of water stress on photochemical activity of chloroplasts during greening etiolated barley seedlings. Plant Cell Physiology 22 (2): 155-162.
 
 
Boyer, J. S. 1982. Plant productivity and environment. Science 218: 443-448. Brumos, J., Talon, M., Bouhlal, R. Y. M., and Colmenero‐Flores, J. M. 2010. Cl‐homeostasis in includer and excluder citrus rootstocks: transport mechanisms and identification of candidate genes. Plant, Cell & environment 33 (12): 2012-2027.
 
 
Dubbels, R., Reiter, R. J., Klenke, E., Goebel, A., Schnakenberg, E., Ehlers, C., and Schloot, W. 1995. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography‐mass spectrometry. Journal of Pineal Research 18 (1): 28-31.
 
 
Earl, H. J., and Davis, R. F. 2003. Effect of drought stress on leaf canopy radiation use efficiency and yield of maize. Agronomy Journal 95 (3): 688- 696.
 
 
Ebtadaei, M., Arzani, K., and Abdollahi, H. 2022. Physiological and biochemical responses of Dargazi seedling and Pyrodwarf clonal pear rootstocks to Melatonin application under drought stress conditions. Seed and Plant Journal 37 (4): 453- 470. (in Persian).
 
 
Havaux, M., and Niyogi, K. K. 1999. The violoxanthin cycle protects plants from photo oxidative damage by more than one mechanism. Proceedings of the National Academy of Sciences 96 (15): 8762-8767.
 
 
Hussain, S., Luro, F., Costantino, G., Ollitrault, P., and Morillon, R. 2012. Physiological analysis of salt stress behaviour of citrus species and genera: low chloride accumulation as an indicator of salt tolerance. South African Journal of Botany 81: 103-112.
 
 
Kostopoulou, Z., Therios, I., Roumeliotis, E., Kanellis, A. K., and Molassiotis, A. 2015. Melatonin combined with ascorbic acid provides salt adaptation in Citrus aurantium L. seedlings. Plant Physiology and Biochemistry 86: 155-165.
 
 
Li, C. K., Wang, P., Wei, Z., Liang, D., Liu, C., Yin, L., Jia, D., Fu, M., and Ma, F. 2012. The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. Journal of Pineal Research 53(3): 298-306.
 
Li, H., Chang, J., Chen, H., Wang, Z., Gu, X., Wei, C., and Zhang, X. 2017. Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Frontiers in Plant Science 8: 295. https://doi.org/10.3389/fpls.2017.00295.
 
 
Li, Y., Zhang, Y., Feng, F., Liang, D., Cheng, L., Ma, F., and Shi, S. 2010. Overexpression of a Malus vacuolar Na+/H+ antiporter gene (MdNHX1) in apple rootstock M.26 and its influence on salt tolerance. Plant Cell Tissue and Organ Culture 102 (2): 337-345.
 
 
Liu, Z., Cai, J. S., Li, J. J., Lu, G. Y., Li, C. S., Fu, G. P., and Cheng, Y. 2018. Exogenous application of a low concentration of melatonin enhances salt tolerance in rapeseed (Brassica napus L.) seedlings. Journal of Integrative Agriculture 17 (2): 328-335.
 
 
Lutts, S., Kinet, J. M., and Bouharmont, J. 1996. NaCl-induced senescence in leaves of rice (Oryza sativa L.). Annals of Botany 78 (3): 389-398.
 
 
Makhdum, M. I., Malik, M. N. A., Din, S. U., Ahmad, F., and Chaudhry, F. I. 2002. Physiological response of cotton to methanol foliar application. Journal Research Science 13 (1): 37-43.
 
 
Melgar, J. C., Syvertsen, J. P., Martínez, V., and García-Sánchez, F. 2008. Leaf gas exchange, water relations, nutrient content and growth in citrus and olive seedlings under salinity. Biologia Plantarum 52: 385-390.
 
 
Moustafa-Farag, M., Elkelish, A., Dafea, M., Khan, M., Arnao, M. B., Abdelhamid, M. T., and Ai, S. 2020. Role of melatonin in plant tolerance to soil stressors: salinity, pH and heavy metals. Molecules 25 (22): 5359. DOI: 10.3390/molecules25225359. Munns, R., and Tester, M. 2008. Mechanisms of Salinity Tolerance. Annual Review of Plant Biology 59: 651-681.
 
 
Navarro, J. M., Pérez-Tornero, O., and Morte, A. 2014. Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. Journal of Plant Physiology 171 (1): 76-85.
 
 
Pandey, H. C., Baig, M. J., Chandra, A., and Bhatt, R. K. 2015. Drought stress induced changes in lipid peroxidation and antioxidant system in genus Avena. Journal of Environment Biology 31 (4): 435-440.
 
 
Parida, A. K., and Das, A. B. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety 60 (3): 324-349. DOI: 10.1016/j.ecoenv.2004.06.010.
 
 
Pessarakli, M. 2016. Handbook of plant and crop stress. CRC press. 1254 pp.
 
 
Raveh, E., and Levy, Y. 2005. Analysis of xylem water as an indicator of current chloride uptake status in citrus trees. Scientia Horticulturae 103 (3): 317-327.
 
 
Shi, H., Quintero, F. J., Pardo, J. M., and Zhu, J. K. 2002. The putative plasma membrane Na(+)/H(+) antiporter SOS1 controls long-distance Na(+) transport in plants. Plant Cell 14 (2): 465-477.
 
 
Shi, H., Jiang, C., Ye, T., Tan, D. X., Reiter, R. J., Zhang, H., Liu, R., and Chan, Z. 2015. Comparative physiological, metabolomic, and transcriptomic analyse sreveal mechanisms of improved abiotic stress resistance in bermudagrass (Cynodon dactylon L. Pers.) by exogenous melatonin. Journal of Experimental Botany 66 (3): 681-694.
 
 
Syvertsen, J. P., and Garcia-Sanchez, F. 2014. Multiple abiotic stresses occurring with salinity stress in citrus. Environmental and Experimental Botany 103: 128-137.
 
 
Takahashi, S., and Murata, N. 2008. How do environmental stresses accelerate photoinhibition? Trends in Plant Science 13 (4): 178-182.
 
 
Tal, O., Haim, A., Harel, O., and Gerchman, Y. 2011. Melatonin as an antioxidant and its semi-lunar rhythm in green macroalga Ulva sp. Journal Experimental Botany 62 (6):1903-1910.
 
 
Wang, P., Yin, L., Liang, D., Li, C., Ma, F., and Yue, Z. 2012. Delayed senescence of apple leaves by exogenous melatonin treatment: Toward regulating the ascorbate-glutathione cycle. Journal of Pineal Research 53 (1): 11-20.
 
 
Zahedi, S. M., Hosseini, M. S., Abadía, J., and Marjani, M. 2020. Melatonin foliar sprays elicit salinity stress tolerance and enhance fruit yield and quality in strawberry (Fragaria× ananassa Duch.). Plant Physiology and Biochemistry 149: 313-323.
 
 
Zeinanloo, A. A., Dodangeh, M., and Tavusi, S. M. 2020. Evaluation of Salinity tolerance in six olive (Olea europaea L.) genotypes in controlled environment. Seed and Plant Journal 36 (3): 317-333 (in Persian).
 
 
Zhang, N., Zhang, H. J., Zhao, B., Sun, Q. Q., Cao, Y. Y., Li, R., Wu, X. X., Weeda, S., Li, L., Ren, S., Reiter, R., and Guo, Y. D. 2014. The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. Journal of Pineal Research 56 (1): 39-50.
 
 
Zhang, N., Sun, Q., Zhang, H., Cao, Y., Weeda, S., Ren, S., and Guo, Y. D. 2015. Roles of melatonin in abiotic stress resistance in plants. Journal of Experimental Botany 66 (3): 647-656.