ارزیابی پایداری عملکرد ریشه و شکر سفید ژنوتیپ های چغندرقند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 موسسه تحقیقات اصلاح و تهیه بذر چغندرقند، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

2 مرکز تحقیقات کشاورزی و منابع طبیعی خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران.

3 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز، ایران.

4 مرکز تحقیقات کشاورزی و منابع طبیعی آذربایجان غربی، سازمان تحقیقات آموزش و ترویج کشاورزی، ارومیه، ایران.

5 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی کرمانشاه، سازمان تحقیقات آموزش و ترویج کشاورزی، کرمانشاه، ایران.

چکیده

به منظور ارزیابی پایداری عملکرد ریشه و شکر سفید11 برای ژنوتیپ چغندرقند بهاره به همراه سه رقم شاهد، آزمایشی در قالب طرح بلوک های کامل تصادفی با چهار تکرار در شش ایستگاه تحقیقات کشاورزی در استان های خراسان رضوی (طرق)، فارس (زرقان)، کرمانشاه، آذربایجان غربی (میاندوآب و خوی) و کرج در دو سال زراعی 1399 و 1400 اجرا شد. تجزیه واریانس مرکب داده ها نشان داد که برهمکنش ژنوتیپ × محیط در سطح احتمال یک درصد معنی دار بود. ژنوتیپ ها واکنش های متفاوتی در شرایط محیطی مختلف داشتند. براساس روش ضریب رگرسیونی، انحراف از رگرسیون، واریانس برهمکنش شوکلا و اکووالانس ریک، و روش ضریب تبیین ژنوتیپ های GB-6 و GB-10 به ترتیب پایدارترین عملکرد ریشه و شکر سفید را داشتند. هرچند که براساس پارامتر واریانس درون مکانی و ضریب تغییرات تعداد ژنوتیپ های پایدار افزایش نشان داد. با این وجود، سه ژنوتیپ GB-10، GB-11 و GB-2 به ترتیب دارای پایداری بالا برای عملکرد ریشه و شکر سفید بودند. با استفاده از روش GGE بای پلات، ژنوتیپ های GB-11، GB-10، GB-2 و GB-6 به ترتیب دارای میانگین عملکرد ریشه و شکر سفید بالاتر از میانگین کل ژنوتیپ ها بودند. بر اساس نتایج این پژوهش ژنوتیپ های GB-6، GB-11، GB-2 و GB-10 به عنوان ژنوتیپ های دارای عملکرد ریشه و شکر سفید بالاو پایدار شناسایی شدند.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment of Root and White Sugar Yield Stability of Sugar Beet Genotypes

نویسندگان [English]

  • P. Fasahat 1
  • J. Rezaei 2
  • M. Sharifi 3
  • H. Azizi 4
  • K. Fatuhi 4
  • P. Mahdikhani 4
  • A. Pedram 4
  • , A. Jalilian 5
  • B. Babaei 1
1 Sugar Beet Seed Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.
2 Khorasan Razavi Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Mashhad, Iran.
3 Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Shiraz, Iran.
4 West Azerbaijan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Urmia, Iran.
5 Kermanshah Agricultural and Natural Resources Research and Education Center of, Agricultural Research, Education and Extension Organization, Kermanshah, Iran.
چکیده [English]

To assess root and white sugar yield stability of 11 spring sugar beet genotypes together with three check cultivars, a field experiment was carried out using randomized complete block design with four replications in six agricultural research stations; Toroq (Mashhad), Zarghan, Khoy, Kermanshah Miandoab, and Karaj, Iran, in 2020 and 2021. Combined analysis of variance showed that genotype × environment interaction was significant (P < 0.01), and genotypes had different performance in different environmental conditions. Based on regression coefficient, deviation from regression, Shukla’s stability variance, Wrick's ecovalence, and coefficient of determination, GB-6 and GB-10 genotypes were identified with high root and white sugar yield and yield stability. Although the number of genotypes with yield stability increased by using superiority measure and coefficient of variation, three genotypes including; GB-11, GB-10, and GB-2 showed the highest yield stability for root and white sugar yield, respectively. Using GGE biplot method, GB-11, GB-10, GB-2 and GB-6 were identified with higher root and white sugar yield, than average of all genotypes, and higher yield stability, respectively. Considering the results of this research, GB-6, GB-11, GB-2, and GB-10 were identified as high-yielding genotypes with high yield stability.

کلیدواژه‌ها [English]

  • Sugar beet
  • genotype × environment interaction
  • stability parameters
  • regression coefficient
  • GGE biplot
Eberhart, S. A., and Russel, W. A. 1966. Stability parameters for comparing varieties. Crop Science 6: 36-40.
 
Fasahat, P., Khayamim, S., Soltani Idliki, J., Darabi, S., Pedram, A., Hasani, M., Jalilian, A., and Babaei, B. 2019. Stability analysis of genotype × environment interaction effect on sugar yield in sugar beet hybrids. Journal of Crop Breeding 11 (32): 33-40 (in Persian).
 
Fasahat, P., Muhammad, K., Abdullah, A., Rahman, B. M. A., Ngu. M. S., Gauch, J. H. G., and Ratnam, W. 2014. Genotype × environment assessment for grain quality traits in rice. Communications in Biometry and Crop Science 9 (2): 71-82.
 
Fasahat, P., Rajabi, A., Mahmoudi, S. B., Abdolahian Noghabi, M., and Mohseni Rad, J. 2015. An overview on the use of stability parameters in plant breeding. Biometrics & Biostatistics International Journal 2 (5): 1-11.
 
Fasahat, P., Rajabi, A., Mohseni Rad, J., and Derera, J. 2016. Principles and utilization of combining ability in plant breeding. Biometrics & Biostatistics International Journal 4 (1): 1-24.
 
Fasahat, P., Khayamim, S., Soltani Idliki, J., Darabi, S., Pedram, A., Hasanai, M., Jalilian, A., and Babaei, B. 2020. Biplot analysis of genotype × environment interaction on extraction coefficient of sugar in sugar beet hybrids. pp. 1-5. In: Proceedings of the 16th National Congress of Agricultural Sciences and Plant Breeding. Khuzestan University of Agricultural Sciences and Natural Resources, Ahwaz, Iran.
 
Fasahat, P., Khayamim, S., Soltani Idliki, J., Darabi, S., Pedram, A., Hasanai, M., Jalilian, A., and Babaei, B. 2018. Targeted crossing to transfer the resistance genes in sugar beet. pp. 242-243. In: Proceedings of the 4th International Student Biotechnology Congress. Tehran, Iran.
 
 
Finlay, K. W., and Wilkinson, G. N. 1963. The analysis of adaptation in a plant-breeding programme. Australian Journal of Agricultural Re‌search 14 (6): 742-754.
 
Francis, T. R., and Kannenberg, L. W. 1978. Yield stability studies in short season maize: I. A descriptive method for grouping genotypes. Canadian Journal of Plant Science 58 (4): 1029-1034.
 
Friedman, M. 1937. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association 32: 675-701.
 
Grausgruber, H., Oberforster, M., Werteker, M., Ruckenbauer, P., and Voll‌mann, J. 2000. Stability of quality traits in Austrian-grown winter wheats. Field Crops Research 66 (3): 257-267.
 
Hasani, M., Hamze, H., and Mansori, H. 2021. Evaluation of adaptability and stability of root yield and white sugar yield (Beta vulgaris L.) in sugar beet genotypes using multivariate AMMI and GGE Biplot method. Journal of Crop Breeding 13 (37): 222-235 (in Persian).
 
Hasani, M., Heidari, B., Dadkhodaie, A., and Stevanato, P. 2018. Genotype by environment interaction components underlying variations in root, sugar and white sugar yield in sugar beet (Beta vulgaris L.). Euphytica 214 (79): 4-21.
 
Hoffmann, C. M., and Loel, J. 2015. Bedeutung der Züchtung für den Ertragsanstieg von Zuckerrüben. Sugar Industry 140: 48-56.
 
Keshavarz, S., Mesbah, M., Ranji, Z. L., and Amiri, R. 2008. Study on stability parameters for determining the adaptation of sugar beet commercial varieties in different areas of Iran. Journal of Sugar Beet 1 (17): 15-36 (in Persian).
 
Lin, C. S., and Binns, M. R. 1988. A method of analyzing cultivar × location × year experiments: A new stability parameter. Theoretical and Applied Genetics 76 (3): 425-430.
 
Luterbacher, M., Asher, M., Beyer, W., Mandolino, G., Scholten, O., Frese, L., and Slyvchenko, O. 2005. Sources of resistance to diseases of sugar beet in related Beta germplasm: II. Soil-borne diseases. Euphytica 141 (1): 49-63.
 
Miller, P. A., Williams, C. J., Robinson, H. F., and Comstock, R. 1958. Estimates of genotypic and environmental variances and covariance in upland cotton and their implication in selection. Agricultural Journal 50: 126-137.
 
Moradi, F., Safari, H., and Jalilian, A. 2014. Study of genotype × environment interaction for sugar beet monogerm cultivars using AMMI method. Journal of Sugar Beet 28 (1): 55-66.
 
Pinthus, M. J. 1973. Estimates of genotypic value: a proposed method. Euphytica 22 (1): 345-351.
 
Reinfeld, E., Emmerich, A., Baumgarten, G., Winner, C., and Beiss, U. 1974. Zur voraussage des melassez zuckersaus ruben analysen zucker. Zucker 27: 2-15.
 
Shukla, G. K. 1972. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity 29 (2): 237-245.
 
Tabrizi, H. Z. 2012. Genotype by environment interaction and oil yield stability analysis of six sunflower cultivars in Khoy, Iran. Advances in Environmental Biology 6: 227-231.
 
Vaezi, B., Pour-Aboughadareh, A., Mohammadi, R., Mehraban, A., Hossein-Pour, T., Koohkan, E., Ghasemi, S., Moradkhani, H., and Siddique, K. H. 2019. Integrating different stability models to investigate genotype × environment interactions and identify stable and high-yielding barley genotypes. Euphytica 215: 63. https://doi.org/10.1007/s10681-019-2386-5.
 
Wricke, G. 1964. Zur berechnung der okovalenz bei sommerweizen und hafer. Z Pflanzenzuchtg 52: 127-138.
 
Xie, M. 1996. Selection of stable cultivars using phenotypic variances. Crop Science 36: 572-576. Yan, W. and Tinker, N. A. 2006. Biplot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Science 86: 623-645.