فنولوژی گلدهی و وضعیت خودسازگاری تعدادی از ژنوتیپ های زردآلو حاصل از تلاقی ارقام خودناسازگار و خودسازگار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه باغبانی، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران.

2 پژوهشکده میوه‌های معتدله و سردسیری، موسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

3 گروه نانوتکنولوژی، پژوهشکده بیوتکنولوژی کشاورزی ایران، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

چکیده

زردآلو یکی از مهمترین و اقتصادی‌ترین درختان میوه مناطق معتدله در ایران و جهان به شمار می‌رود. ارقام بومی کشور، به دلیل خودناسازگاری معمـولاً از پایداری عملکرد میوه پایینی برخوردار هستند. در پژوهش حاضر 19 ژنوتیپ حاصل از گرده افشانی آزاد ارقام تجاری خودناسازگار شاهرودی و شمس با دانه گرده ارقام خودسازگار ایتالیایی سن‌کاسترزه (San Castrese)، پالوملا (Palumella)، ویتیلو (Vitillo) و کافونا (Cafona) انتخاب و از نظر امکان انتقال صفت خودسازگاری به نتاج و نیز بررسی خصوصیات فنولوژیک گلدهی همراه با رقم شاهرودی به عنوان شاهد در سال‌های 99-1397 در ایستگاه تحقیقاتی باغبانی پژوهشکده میوه‌های معتدله و سردسیری، موسسه تحقیقات علوم باغبانی واقع در مشکین دشت کرج مورد مطالعه قرار گرفتند. ژنوتیپ‌های مورد مطالعه از نظر زمان گلدهی، طول دوره گلدهی، درصد جوانه‌زنی دانه گرده، درصد تشکیل میوه پس از خود گرده‌افشانی کنترل شده و زمان رسیدن میوه با یکدیگر تفاوت معنی-داری داشتند. مقایسه میانگین‌ها نشان داد بیشترین میزان درصد جوانه‌زنی دانه گرده در ژنوتیپ 525 (69 درصد) وکمترین آن در ژنوتیپ 579 (2/5 درصد) مشاهده شد. ارزیابی های حاصل از گرده افشانی کنترل شده در باغ و میکروسکوپ فلورسنت نشان داد 13 ژنوتیپ شامل 431، 432، 446، 451، 525، 526، 546، 557، 565، 570، 576، 579 و 585 خودسازگار محسوب شدند. ضرایب همبستگی در دو سال متوالی نشان داد که بین زمان گلدهی و زمان رسیدن میوه همبستگی منفی و بسیار معنی دار در سال اول(r = -0.63**) و سال دوم (r = -0.48**) وجود داشت. درصد جوانه زنی دانه گرده همبستگی مثبت و بسیار معنی داری(r = 0.97**) با تشکیل اولیه میوه داشت. همچنین با بررسی نتایج دوساله، ژنوتیپ‌های 431 و 446 به عنوان ژنوتیپ‌های دیرگل شناسایی شدند. بنابراین از نتایج این پژوهش چنین استنباط می شود که خود سازگاری در زرد آلو به آسانی از والدین به نتاج منتقل می شود و دو ژنوتیپ دیر گل شناسایی شده می‌توانند در برنامه های به نژادی زردآلو مورد استفاده قرار گیرند.

کلیدواژه‌ها


عنوان مقاله [English]

Flowering Phenology and Self-(in)compatibility Status of Some Apricot Genotypes Developed from Crossing Self-incompatible and Self-compatible Cultivars

نویسندگان [English]

  • K. Oroji Salmasi 1
  • R. Gharesheikhbayat 2
  • S. M Miri 1
  • M. Pirkhezri 2
  • D. Davoodi 3
1 Department of Horticulture, Karaj Branch, Islamic Azad University, Karaj, Iran.
2 Temperate Fruits Research Center, Horticultural Science Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.
3 Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran.
چکیده [English]

Apricot is one of the most economically important fruit trees in temperate regions of Iran and in the world. However, it usually produces low fruit yield, due to its self-incompatibility. In this study, self-incompatibility status and flowering phenological characteristics of 19 five-years-old apricot genotypes, developed from open-pollination of Iranian commercial apricot cultivars; Shahroudi and Shams as female parents, and Italian cultivars; San Castrese, Palumella, Vitillo and Cafona as male parents, were evaluated. Timing of blooming, blooming duration, pollen germination (%), fruit set (%), timing of fruit ripening and some other traits were evaluated and recorded. The results showed that apricot genotypes were significantly different for timing of flowering, pollen germination (%), fruit formation (%) and timing of fruit ripening. Mean comparison showed that the highest pollen germination (%) belonged to genotype 525 (69%) and the lowest to genotype 579 (5.2%). Evaluation of data from controlled pollination and fluorescent microscopy study showed that 13 genotypes 431, 446, 432, 446, 451, 526, 546, 557, 565, 570, 576, 579 and 585 could be considered as self-compatible genotypes. Correlation coefficients showed that there was negative and highly significant relationship (r = -0.63**) in first year and (r = -0.48**) in second year, between timing of flowering and fruit ripening. Also correlation coefficient between pollen germination (%) and initial fruit set (%) was positive and highly significant (r = 0.97**). The results of this study implied that self-compatibility is easily transferred from parents to progenies, and the two identified late flowering genotypes can be used in apricot breeding programs.

کلیدواژه‌ها [English]

  • Apricot
  • pollen germination
  • timing of flowering
  • pollination
  • fluorescent microscopy
Andres, M. V., and Duran, J. M. 1998. Self-incompatibility in Spanish clones of apricot (Prunus armeniaca L.) tree. Euphytica 101: 349-355.
 
Asma, B. M., Kan, T., and Birhanli, O. 2007. Characterization of promising apricot (Prunus armenica L.) genetic resources in Malatya, Turkey. Genetic Resources and Crop Evolution 54: 205-212.
 
Audergon, J. M., Guerriero, R., Monteleone, P., and Viti, R. 1999. Contribution to the study of inheritance of the character self-incompatibility in apricot. Acta Horticulturae 488: 275-280.
 
Burgos, L., Alburquerque, N., and Egea, J. 2004. Review: Flower biology in apricot and its implications for breeding. Spanish Journal of Agricultural Research 2 (2): 227-241.
 
Fikret Balta, M., Muradoglu, F., Askin, M. A., and Kaya, T. 2007. Fruit sets and fruit drops in Turkish apricot (Prunus armeniaca L.) varieties grown under ecological conditions of Van, Turkey. Asian Journal of Plant Sciences 6: 298-303.
 
Fotirić Akšić, M., Cerović, R., Hjeltnes, S.H., and Meland, M. 2022. The effective pollination period of European plum (Prunus domestica L.) cultivars in western Norway. Horticulturae 8 (1): 55.
 
Ganji Moghadam, E., Rahnemoun, H., and Zamanipour, M. 2020. Comparison of phenological, morphological and pomological characteristics of six apricot promising genotypes in Khorasan Razavi province. Journal of Horticultural Science 34 (3): 505-520 (in Persian).
 
Ganji Moghadam, E., Dejampour, J., and Zamanipour, M. 2021. Comparison of quantitative and qualitative characteristics of 35 promising hybrids and genotypes of apricot under Khorasan Razavi province conditions. Journal of Plant Production 28 (3): 61-88 (in Persian).
 
Gharesheikhbayat, R. 2010. Self-incompatibility in apricot (Prunus armeniaca); new achievements and molecular aspects of S-locus allele segregation. Ph. D. thesis. University of Bologna. Bologna, Italy. 164 pp.
 
Gharesheikhbayat, R., Dondini, L., and Sansavini, S. 2011. Identification of self-incompatibility alleles in apricot (Prunus armeniaca L.) using multi-level approaches. Seed and Plant Improvement Journal 27-1 (3): 411-426 (in Persian).
 
Herrera, S., Lora, J., Hormaza, J. I., Herrero, M., and Rodrigo, J. 2018. Optimizing production in the new generation of apricot cultivars: self-incompatibility, S-RNase allele identification, and incompatibility group assignment. Frontiers in Plant Science 9 (527). https://doi.org/10.3389/fpls.2018.00527.
 
Jamshidi, A. R., Imani, A., and Miri, S. M. 2021. Identification of the pollinizer for a new almond genotype ‘Karaj 33’. Journal of Horticulture and Postharvest Research 4 (4): 521-528.
 
Imani, A., Goudarzi, H., Miri, S. M., and Zinalabdini, M. 2014. Investigation, identification and heritability of S and F alleles and vegetative characteristics in almond hybrids using morphological and molecular (PCR) markers. Modares Journal of Biotechnology 5 (2): 29-44 (in Persian).
 
Mashhadi, Z., and Khadivi, A. 2022. Identification of superior late‐blooming apricot (Prunus armeniaca L.) genotypes among seedling‐originated trees. Food Science and Nutrition 10 (4): 1159-1166.
 
McClure, B. A., and Franklin-Tong, V. 2006. Gametophytic self-incompatibility: Understanding the cellular mechanisms involved in self pollen tube inhibition. Planta 224: 233-254.
 
McLaren, G. F., Fraser, J. A., and Grant, J. E. 1996. Some factors influencing fruit set in ‘Sundrop’ apricot. New Zealand Journal of Crop and Horticultural Science 24 (1): 55-63.
 
Meier, V. U., Graf, H., Hack, H., Heß, M., Kennel, W., Klose, R., Mappes, D., Seipp, D., Stauß, R., Streif, J., and van den Boom, T. 1994. Phänologische entwicklungsstadien des kernobstes (Malus domestica Borkh. und Pyrus communis L.), des steinobstes (Prunus-Arten) der johannisbeere (Ribes-Arten) und der erdbeere (Fragaria × ananassa Duch.). Nachrichtenbl Deut Pflanzenschutzd 46 (7): 141-153.
 
Mesbahi, K., Ganji Moghaddam, E., Nikkhah, Sh., and Asgharzadeh, A. 2014. Phenological, morphological and pomological characteristics of some apricot genotypes and effect of pre-treatment and drying method on quality of their dried fruits. Seed and Plant Production 30 (2): 153-167 (in Persian).
 
Milatović, D., Nikolić, D., Fotirić-Akšić, M., and Radović, A. 2013. Testing of self-(in)compatibility in apricot cultivars using fluorescence microscopy. Acta Scientiarum Polonorum Hortorum Cultus 12 (6): 103-113.
 
Milosević, T., Milosević, N., Glisić, I., and Krska, B. 2010. Characteristics of promising apricot (Prunus armeniaca L.) genetic resources in central Serbia based on blossoming period and fruit quality. Horticultural Science 37 (2): 46-55.
 
Molaie, S., Soleimani, A., Zeinolabedini, M., and Maleki, B. 2014. Study of self-incompatibility in some apricot (Prunus armeniaca L.) genotypes using classic and molecular methods. Seed and Plant Improvement Journal 30: 777-790 (in Persian).
 
Najafi, P., Imani, A., Miri, S. M., and Zinalabdini, M. 2015. Identification and screening of homozygous from heterozygous almond progenies from self-pollinated Touno cultivar using PCR. Journal of Nuts 6 (2): 155-164.
 
Nejatian, M. A., and Arzani, K. 2004. Determination of self-incompatibility and effective pollination period in four local Iranian apricot (Prunus armeniaca) cultivars. Journal of Horticultural Science and Technology 5: 147-156 (in Persian).
 
Nekonam, F., Fattahimoghadam, M., and Ebadi, A. 2010. Investigation of incompatibility and infertility in four Iranian commercial cultivars of apricot. Iranian Journal of Horticultural Science 42: 1-9 (in Persian).
 
Oprita, V. A., and Gavat, C. 2019. The behaviour of some apricot cultivars with late blooming in south-eastern Romania. Acta Horticulturae 1242: 385-388.
 
Ruiza, D., and Egea, J. 2008. Analysis of the variability and correlations of floral biology factors affecting fruit set in apricot in a Mediterranean climate. Scientia Horticulturae 115 (2): 154-163.
 
Shamsolshoara, Y., Gharesheikhbayat, R., Miri, S. M., Pirkhezri, M., and Davoodi, D. 2022. Floral morphology, pollen quality and self-(in)compatibility in three natural Prunus interspecific hybrids. Journal of Plant Physiology and Breeding 12 (2): (in Persian). DOI: 10.22034/JPPB.2022.50788.1261
 
Shamsolshoara, Y., Miri, S. M., Gharesheikhbayat, R., Pirkhezri, M., and Davoodi, D. 2021. Phenological, morphological, and pomological characterizations of three promising plum and apricot natural hybrids. Taiwania 66 (4): 466-478.
 
Westwood, M. N. 1993. Temperate-zone pomology: Physiology and culture. Third edition. Timber Press. Portland, Oregon, USA. 523 pp.
 
Yaman, M., and Uzun, A. 2020. Evaluation of superior hybrid individuals with intra and interspecific hybridization breeding in apricot. International Journal of Fruit Science 20 (S3): S2045-S2055.
 
Zarrinbal, M., Baghban Kohnehrouz, B., Soleimani, A., and Dejampour, J. 2019. Assessment of fruit set percentage and pollen compatibility status in different apricot cultivars. Journal of Agricultural Science and Sustainable Production 29 (2): 205-221 (in Persian).