تحمل به یخ‌زدگی در برخی ژنوتیپ‌های عدس در شرایط کنترل‌شده

نویسندگان

1 پژوهشکده علوم گیاهی، دانشگاه فردوسی مشهد

2 دانشکده کشاورزی و پژوهشکده علوم گیاهی، دانشگاه فردوسی مشهد، مشهد، ایران.

3 گروه کشاورزی دانشگاه پیام نور، تهران، ایران.

4 دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.

5 پژوهشکده علوم گیاهی، دانشگاه فردوسی مشهد، مشهد، ایران.

چکیده

به‌منظور به‌گزینی جهت تحمل به یخ‌زدگی 40 ژنوتیپ عدس آزمایشی به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی در سال 1396 در پژوهشکده علوم گیاهی دانشگاه فردوسی مشهد انجام شد. ژنوتیپ‌ها‌ در معرض سه دمای یخ‌زدگی (13-، 15- و 18- درجه‌سانتی‌گراد) قرار گرفتند. نتایج نشان داد که در دماهای 13-، 15- و 18- درجه ‌سانتیگراد به‌ترتیب 100، 93 و 30 درصد از ژنوتیپ‌ها با حداکثر بقای خود (100 درصد) تفاوت معنی‌داری نداشتند. تنها سه ژنوتیپ MLC12، MLC17 و MLC95 توانایی حفظ بقای 100 درصد در هر سه دمای یخ‌زدگی را داشتند. کمترین دمای کاهنده 50 درصد سطح برگ (RLAT50) و وزن خشک گیاه (RDMT50)، به‌ترتیب برابر با 5/16- و 7/16- درجه‌سانتیگراد بود و بیشتر ژنوتیپ‌ها در حفظ 50 درصد از صفات مذکور در دوره بازیافت موفق بودند. ژنوتیپ‌های MLC8 و MLC286 با RDMT50 معادل 7/16- درجه‌ سانتیگراد بیشترین توانایی برای حفظ وزن خشک خود را داشتند و در نقطه مقابل ژنوتیپ MLC74 با RDMT50 معادل 4/13- درجه‌سانتیگراد کمترین تحمل به سرما را ازنظر افزایش وزن خشک در دوره بازیافت داشت. به‌طورکلی 37 ژنوتیپ از تحمل مناسبی برای مواجهه با تنش یخ‌زدگی برخوردار بودند بنابراین باتوجه به نتایج این آزمایش این 37 ژنوتیپ‌ عدس می توانند در برنامه به نژادی عدس برای مناطق هدف با دمای حداقل 15-درجه سانتیگراد مورد استفاده قرار گیرند.

کلیدواژه‌ها


عنوان مقاله [English]

Freezing Tolerance in Some Lentil Genotypes under Controlled Conditions

نویسندگان [English]

  • J. Nabati 1
  • A. Nezami 2
  • S. M. Mirmiran 3
  • A. R. Hasanfard 4
  • S. S. Hojjat 5
  • A. Bagheri 2
1 Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
2 Faculty of Agriculture and Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
3 Department of Agronomy, Payam-e-Noor University, Tehran, Iran.
4 Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
5 Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
چکیده [English]

To study freezing tolerance of 40 genotypes of lentil (Lens culinaris Medik.) an experiment as factorial arrangements in completely randomized design with three replications was carried out at the research center for plant science, Ferdowsi University of Mashhad, Mashhad, Iran, in 2017-2018. Genotypes were exposed to three levels of freezing temperatures (-13, -15 and -18 °C). The results showed that at -13, -15 and -18 °C temperature levels, 100, 93 and 30 percent of genotypes had no significant difference with their maximum survival (100%), respectively. Only three genotypes MLC12, MLC17 and MLC95 were able to maintain 100% survival at all three freezing temperature levels. The lowest temperatures reducing 50% of leaf area (RLAT50) and dry matter (RDMT50) were -16.5 and -16.7 °C, respectively, and most of the genotypes succeeded in retaining 50 percentage of these traits during the recovery period. MLC8 and MLC286 genotypes with RDMT50 of -16.7 °C had the highest ability to maintain dry weight, whereas MLC74 genotype with RDMT50 of -13.4 °C had the least cold tolerance in respect to dry weight during recovery. Generally, 37 genotypes had reasonable level of tolerance to freezing stress. Therefore, based on the results of this experiment these 37 genotypes can be used in lentil breeding program for target areas with a minimum temperature of -15 °C.

کلیدواژه‌ها [English]

  • Lentil
  • survival
  • RDMT50
  • RLAT50
  • recovery period
Anderson, J. A., Kenna, M. P., and Taliaferro, C. M. 1988. Cold hardiness of “Midiron” and “Tifgreen” bermudagrass. Horticultural Science 23: 748-750.
 
Arisz, S. A., Heo, J. Y., Koevoets, I. T., Zhao, T., van Egmond, P., Meyer, A. J., Zeng, W., Niu, X., Wang, B., Mitchell-Olds, T., Schranz, M. E., and Testerink, Ch. 2018. Diacylglycerol acyltransferase1 contributes to freezing tolerance. Plant Physiology 177 (4): 1410-1424.
 
Bagheri, A., Nezami, A., and Hojjat, S. 2004. Evaluation of cold tolerance in lentil for fall planting in the highlands of Iran. Final report of research project, Ferdowsi University of Mashhad (in Persian).
 
Dalmannsdottir, S., Jørgensen, M., Rapacz, M., Østrem, L., Larsen, A., Rødven, R., and Rognli, O.A. 2017. Cold acclimation in warmer extended autumns impairs freezing tolerance of perennial ryegrass (Lolium perenne) and timothy (Phleum pratense). Physiologia Plantarum 160 (3): 266-281.
 
FAOSTAT, 2017. Food and Agriculture Organization of the United Nations. http://www.fao.org/faos tat/en/#data/QC. Latest accessed on 20 January 2018.
 
Gholami Rezvani, N., Nezami, A., Kafi, M., and Nabati, J. 2019. Evaluation of lentil (Lens culinaris) genotypes for autumn sowing in cold temperate regions under field conditions. Electronic Journal of Crop Production 11 (4): 142-147 (in Persian).
 
Gilmour, S.J., Hajela, R.K., and Thomashow, M.F. 1988. Cold acclimation in Arabidopsis thaliana. Plant Physiology 87: 745-50.
 
Gonzalez Ponce, R., Zancada, C., Verdugo, M., and Salas, L. 1996. Plant height as a factor in competition between black nightshade and two horticultural crops (tomato and pepper). Journal of Horticultural Science 71 (3): 453-460.
 
Gusta, L.V., O'Connor, B. J., and MacHutcheon, M. G. 1997. The selection of superior winter-hardy genotypes using a prolonged freeze test. Canadian Journal of Plant Science 77 (1): 15-21.
 
Hao, W., Arora, R., Yadav, A. K., and Joshee, N. 2009. Freezing tolerance and cold acclimation in guava (Psidium guajava L.). HortScience 44 (5): 1258-1266.
 
Heidarvand, L., and Maali Amiri, R. M. 2010. What happens in plant molecular responses to cold stress? Acta Physiologiae Plantarum 32 (3): 419-431.
 
Hekneby, M., Antolin, M. C., and Sanchez-Diaz, M. 2006. Frost resistance and biochemical changes during cold acclimation in different annual legumes. Environmental and Experimental Botany 55: 305-314.
 
Hincha, D. K., Schaarschmidt, S., Fischer, A., Erban, A., Pagter, M., Mubeen, U., Walther, D., Giavalisco, P., Kopka, J., Sprenger, H., and Zuther, E. 2018. Cold acclimation, deacclimation and memory in Arabidopsis. pp. 228. In: Plant biology abstracts of the Society of Experimental Botany, Florence 2018.
 
Hojjat, S. S., Bagheri, A. R., and Nezami, A. 2007. Evaluation of lentil germplasm for cold tolerance in order to fall in highlands of Iran. Journal of Agriculture Science 1: 19-31.
 
Hojjat, S. S., and Galstyan, M.H. 2014. Study of economic-ecological results of cold resistance sort of the lentil world collection under highlands of Islamic Republic of Iran. International Journal of Agriculture and Crop Sciences 7 (14): 1364-1370.
 
Hoover, R., Hughes, T., Chung, H. J., and Liu, Q. 2010. Composition, molecular structure, properties, and modification of pulse starches: a review. Food Research International 43 (2): 399-413.
 
Kocsy, G., Galiba, G., and Brunold, C. 2001. Role of glutathione in adaptation and signalling during chilling and cold acclimation in plants. Physiologia Plantarum 113 (2): 158-164.
 
Lee, M. H. 2001. Low temperature tolerance in rice: the Korean experience. pp. 138-141. In: Fukai, S., and Basnayake, J. (eds.) ACIAR proceedings 101: increased lowland rice in the Mekong region.
 
Liu, L., Ji, H., An, J., Shi, K., Ma, J., Liu, B., Tang, L., Cao, W., and Zhu, Y. 2019. Response of biomass accumulation in wheat to low-temperature stress at jointing and booting stages. Environmental and Experimental Botany 157: 46-57.
 
Liu, W., Yu, K., He, T., Li, F., Zhang, D., and Liu, J. 2013. The low temperature induced physiological responses of Avena nuda L., a cold-tolerant plant species. The Scientific World Journal: 1-7.
 
Murray, G. A., Eser, D.L., Gusta, V., and Eteve, G. 1988. Winter hardiness in pea, lentil, faba bean and chickpea. pp. 831-843. In: Summerfield, R. J. (ed.) world crops: cool season food legumes. Kluwer Academic Publishers, the Netherlands.
 
Nayyar, H., Bains, T. S., and Kumar, S. 2005. Chilling stressed chickpea seedlings: effect of cold acclimation, calcium and abscisic acid on cryoprotective solutes and oxidative damage. Environmental and Experimental Botany 54: 275-285.
 
Nezami, A., Bagheri, A. R., Rahimian, H., Kafi, M., Nasiri-Mahalati, M. 2006. Evaluation of freezing tolerance in chickpea (Cicer arietinum L.) genotypes under controlled conditions. Journal of Sciences and Technology of Agriculture and Natural Resources 10: 257-268 (in Persian).
 
Nezami, A., Khamadi, N., Khajehosiny, M., Bagheri, A. 2011. Evaluation of drought tolerance in cold hardy lentils (Lens culinaris medik.) at germination stage. Iranian Journal of Field Crops Research 8 (1): 138-146 (in Persian).
 
Nezami, A., Sanjani, S., Ziaee, M., Soleimani, M., Nassiri-Mahallatia, M., and Bannayan, M. 2012. Evaluation of freezing tolerance of cumin (Cuminum cyminum L.) under controlled conditions. Agricultura 81 (1-2): 75-84.
 
Østrem, L., Rapacz, M., Larsen, A., Marum, P., and Rognli, O. A. 2018. Chlorophyll a fluorescence and freezing tests as selection methods for growth cessation and increased winter survival in ×Festulolium. Frontiers in Plant Science 9:1200. DOI: 10.3389/fpls.2018.01200 Palliotti, A., and Bongi, G. 1996. Freezing injury in the olive leaf and effects of mefluidide treatment. Journal of Horticultural Science 71 (1): 57-63.
 
Pescador, D. S., Sánchez, A. M., Luzuriaga, A. L., Sierra-Almeida, A., and Escudero, A. 2017. Winter is coming: plant freezing resistance as a key functional trait for the assembly of annual Mediterranean communities. Annals of Botany 121 (2): 335-344.
 
Premachandra, G. S., Saneoka, H., Kanaya, M., and Ogata, S. 1991. Cell membrane stability and leaf surface wax content as affected by increasing water deficits in maize. Journal of Experimental Botany 42 (2): 167-171.
 
Repkova, J., Brestic, M., and Olsovska, K. 2009. Leaf growth under temperature and light control. Plant, Soil and Environment 55: 12: 551-557.
 
Rife, C. L., and Zeinali, H. 2003. Cold tolerance in oilseed rape over varying acclimation durations. Crop Science 43 (1): 96-100. Sarker, A., and Erskine, W. 2006. Recent progress in the ancient lentil. The Journal of Agricultural Science 144 (1): 19-29.
 
Schulz, E., Tohge, T., Zuther, E., Fernie, A. R., and Hincha, D. K. 2016. Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Scientific Reports 6: 34027.
 
Singh, K. B., Malhotra, R. S., and Saxena, M. C. 1995. Additional sources of tolerance to cold in cultivated and wild Cicer species. Crop Science 35 (5): 1491-1497.
 
Singh, N., and Singh, G. 2016. Response of lentil (Lens culinaris Medikus) to phosphorus-a review. Agricultural Reviews 37 (1). 27-34.
 
Sulk, R.M., Albrecht, K. A., and Duke, S. H. 1991. Leakage of intra cellular substances as an indicator of freezing injury in alfalfa. Journal of Crop Science 31: 430-435.
 
Summerfield, R. J. 1981. Adaptation to environment in lentils. pp. 91-110. In: Webb, C., and Hatwin, G. (eds.) lentils. Common Wealth Agricultural Bureau. Farnhan Royal, UK.
 
Thalhammer, A., Hincha, D. K., and Zuther, E. 2014. Measuring freezing tolerance: electrolyte leakage and chlorophyll fluorescence assays. Plant cold acclimation: methods and protocols. Methods in Molecular Biology 1166: 15-24.
 
Thavarajah, D., Thavarajah, P., and Agrwal, S. K. 2013. Lentils (Lens culinaris L.): linking whole foods for better human health. pp. 193-207. In: Satou, H., and Nakamura, R. (eds.) Legumes: types, nutritional compostion and health benefets. Nova Sciences Publishers.
 
Venaei, S., Siosemarde, A. and Heydari, Gh. R. 2011. The effects of cold stress in germination stage and seedling on the activity of antioxidant enzymes and some physiological traits in pea (Cicer arietinum). Iranian Journal of Field Crops Research 9: 514-524 (in Persian).
 
Weraduwage, S. M., Chen, J., Anozie, F. C., Morales, A., Weise, S. E., and Sharkey, T. D. 2015. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana. Frontiers in Plant Science 6: 167. DOI: 10.3389/fpls.2015.00167.
 
Wery, J. 1990. Adaptation to frost and drought stress in chickpea and implication in plant breeding. pp. 77–85. In: Saxena, M. C., Cubero, J. I., and Wery, J. (eds.) present status and future prospect of chickpea crop production and improvement in the Mediterranean countries. Spain, CIHEAM.
 
Wisniewski, M., Glenn, D. M., and Fuller, M. P. 2002. Use of a hydrophobic particle film as a barrier to extrinsic ice nucleation in tomato plants. Journal of the American Society for Horticultural Science 127 (3): 358-364.
 
Yazdi Samadi, B., Majnoon Hosaini, N., and Peighambari, A. 2004. Evaluation of cold hardiness in lentil (Lens culinaris) genotypes. Seed and Plant Journal 20: 23-37 (in Persian).