برهمکنش ژنوتیپ × محیط و پایداری عملکرد دانه و علوفه لاین‏های امیدبخش سورگوم دومنظوره

نویسندگان

1 مؤسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

2 موسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

3 بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اصفهان، ایران

4 بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی سیستان (زابل)، سازمان تحقیقات، آموزش و ترویج کشاورزی، زابل، ایران

5 بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران

6 بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خراسان جنوبی، سازمان تحقیقات، آموزش و ترویج کشاورزی، بیرجند، ایران

چکیده

برای ارزیابی الگوی اثر متقابل ژنوتیپ × محیط بر عملکرد دانه و علوفه، 10 لاین امیدبخش سورگوم دو منظوره در قالب طرح بلوک‏های کامل تصادفی با چهار تکرار در شش ایستگاه تحقیقات کشاورزی کرج، مشهد، بیرجند ،زابل، مغان و اصفهان به مدت دو فصل زراعی (1393و1394) کشت شدند. تجزیه واریانس مرکب داده ها نشان داد اثر سال، مکان، ژنوتیپ واثر متقابل آنها بر عملکرد دانه، عملکرد علوفه و عملکرد بیولوژیک در سطح احتمال یک درصد معنی‏دار بود. مقایسه میانگین ها نشان داد لاین شماره 3 (KDFGS9) با عملکرد دانه 8/7 تن در هکتار دارای بیشترین عملکرد دانه بود. لاین های شماره 1 (KDFGS4) و 9 ((KDFGS26  با عملکرد علوفه خشک 26/2 و 26/1 تن در هکتاربه ترتیب  دارای  بیشترین عملکرد علوفه خشک بودند. لاین‏های شماره 1 (KDFGS4) ،2 (KDFGS6) و 9 ((KDFGS26 به ترتیب با 34/3، 33 و 32/5 تن در هکتار عملکرد بیولوژیک نسبت به دیگر لاین‏های مورد بررسی در این آزمایش برتر بودند. تجزیه پایداری با استفاده از روش AMMI و برازش مؤلفه‏های اصلی به اثر متقابل ژنوتیپ × محیط نشان داد دو مؤلفه اصلی برای عملکرد دانه، عملکرد علوفه خشک و عملکرد بیولوژیک معنی‏دار بود. برای عملکرد دانه دو مؤلفه اول 67/8 درصد از مجموع مربعات اثر متقابل را توضیح دادند. با توجه به مدل AMMI و پارامتر ارزش پایداری امی(ASV)، لاین‏های شماره‏2 (KDFGS6) و 3 ( KDFGS9 ) با پایداری عملکرد دانه بالا، لاین‏های مناسب دو منظوره با اولویت تولید دانه و لاین‏های شماره 9 ((KDFGS26 و 1 (KDFGS4) به‏عنوان لاین های مناسب دو منظوره با اولویت تولید علوفه شناسایی شدند.

کلیدواژه‌ها


عنوان مقاله [English]

Genotype × Environment Interaction and Grain and Forage Yield Stability of Promising Lines of Dual-Purpose Sorghum

نویسندگان [English]

  • A. Khazaei 1
  • , M.R. Shiri 2
  • M. Torabi 3
  • A. Ghasemi 4
  • A. R. Beheshti 5
  • A. Azari Nasrabad 6
1 Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
2 Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.
3 Agricultural and Natural Resources Research and Education Center of Isfahan, Agricultural Research, Education and Extension Organization, Isfahan, Iran.
4 Agricultural and Natural Resources Research and Education Center of Sistan, Agricultural Research, Education and Extension Organization, Zabol, Iran.
5 Agricultural and Natural Resources Research and Education Center of Khorasan-e-Razavi, Agricultural Research, Education and Extension Organization, Mashhad, Iran.
6 Agricultural and Natural Resources Research and Education Center of Southern Khorasan, Agricultural Research, Education and Extension Organization, Birjand, Iran.
چکیده [English]

To evaluate the interaction pattern of genotype × environment and grain and dry forage yield stability of 10 promising dual purpose sorghum lines, a field experiment was carried out using randomized complete block design with four replications in six field stations of Karaj, Mashhad, Birjand, Zabol, Moghan and Isfahan in 2014 and 2015 growing seasons. Combined analysis of variance showed that the main effects of year, location, and genotypes as well as their interaction effects were significant (p <0.01) on grain yield, dry forage yield and biological yield. Mean comparison showed that line No. 3 (KDFGS9) with grain yield of 7.8 tha-1 had the highest grain yield, and line No. 1 (KDFGS4) and line number 9 (KDFGS26) with 26.2 and 26.1 tha-1 had the highest dry forage yield, respectively. Line No. 1 (KDFGS4), No. 2 (KDFGS6) and No. 9 (KDFGS26) were superior to the others by producing of 34.3, 33 and 32.5 tha-1 of biological yield, respectively. Analysis of variance by AMMI model and fitting of main components to the genotype by environment interaction effect showed that two main components for grain yield, dry forage yield and biological yield were significant. The first two components explained 67.8 percent of the sum of the squares of the interaction. According to the AMMI model and ASV stability parameter, lines No. 2 (KDFGS6) and No. 3) KDFGS9( with high grain and dry forage yield stability were the most suitable lines for dual purpose with the priority of grain production. On the other hand, lines No. 9 (KDFGS26) and No. 1 (KDFGS4) can be released as dual-purpose cultivars with the priority of forage production.

کلیدواژه‌ها [English]

  • Sorghum
  • AMMI model
  • AMMI stability value
  • dry forage yield
  • biological yield
Adugna, A. 2008. Assessment of yield stability in sorghum using univariate and multivariate statistical approaches. Hereditas 145 (1): 28-37.
 
Allard, R. W., and Bradshaw, A. D. 1964. Implication of genotype-environment interactions in applied plant breeding. Crop Science 4: 503-508.
 
Basafa, M., Taheri, M., and Beheshti, A. R. 2014. Stability analysis for forage yield in sorghum lines. Agronomy Journal (Pajouhesh and Sazendagi) 107: 99 – 107 (in Persian).
 
Crossa, J. 1990. Statistical analyses of multilocation trials. Advances in Agronomy 44: 55-85.
 
Farshadfar, E., and Sutka, J. 2006. Biplot analysis of genotype-environment interaction in durum wheat using the AMMI model. Acta Agronomica Hungarica 54 (4): 459-467.
 
Farshadfar, E. 2008. Incorporation of AMMI stability value and grain yield in a single non-parametric index (GSI) in bread wheat. Pakistan Journal of Biological Sciences 11: 1791-1796.
 
Farshadfar, E. 1998. Application of biometrical genetics in plant breeding. 2nd edition. Razi University Publications. Kermanshah, Iran. 396 pp. (in Persian).
 
Fouman, A. 2012. Evaluation of dual purpose forage and grain sorghum lines in preliminary yield trail. Seed and Plant Improvement Institute. Final Research Project Report No. 03-03-90015. (in Persian).
 
Gauch, H. G. 1988. Model selection and validation for yield trials with interaction. International Biometric Society 44: 705-715.
 
Gauch, H. G. 1990. Full and reduced models for yield trials. Theoritical and Applied Genetics 80: 153-163.
 
Gauch, H. G. 1992. Statistical analysis of regional yield trials: AMMI analysis of factorial designs. Elsevier. Amsterdam, Netherlands. 256 pp.
 
Ghasemi, M., Khalilzadeh, Gh. R. and Gharib Eshghi, A., and Vehabzadeh, M. 2004. Study on grain yield, yield components and green fodder of triticale and barley cultivars. Seed and Plant Journal 20 (3): 345-357 (in Persian).
 
Gollob, H. F. 1968. A Statistical model which combines features of factor analytic and analysis of variance techniques. Psycometrika 33: 367-376.
 
Hongyu, K., García-Peña, M., Araújo, L. B. D., and Dias, S. 2014. Statistical analysis of yield trials by AMMI analysis of genotype × environment interaction. Biometrical Letters 51(2): 89-102.
 
Katsura, K., Tsujimoto, Y., Oda, M., Matsushima, K. I., Inusah, B., Dogbe, W., and Sakagami, J. I. 2016. Genotype by environments interaction analysis of rice (Oryza spp.) yield in a flood plain ecosystem in West Africa. European Journal of Agronomy 73: 152- 159.
 
Khazaei, A., Torabi, M., Mokhtarpour H., and Beheshti, A. R. 2019. Evaluation of yield stability of forage sorghum [Sorghum bicolor (L.) Moench] genotypes using AMMI analysis. Iranian Journal of Crop Sciences 21 (3): 225 -236 (in Persian).
 
Lin, C. S., and Binns, M. R. 1991. A method of analyzing cultivar × location × year experiments: a new stability parameter. Theoretical and Applied Genetics 75: 425-430.
 
Lin, C. S., Binns M. R., and Lefcovitch L. P. 1986. Stability analysis: where do we stand? Crop Science 26: 894-900.
 
Mohammadi, R., Armion, M., Shabani, A., and Daryaei A. 2007. Identification of stability and adaptability in advanced durum wheat genotypes using AMMI analysis. Asian Journal Plant Science 6: 1261-1268.
 
Purchase, J. L. 1997. Parametric analysis todescribe genotype × environment interaction and yield stability in winter wheat. Ph.D. Thesis, Department of Agronomy, Faculty of Agriculture of the University of the Free State, Bloemfontein, South Africa. 166 pp.
 
Rattunde, H. F. W. 2006. Early-maturing dual-purpose sorghums: agronomic trait variation and covariation among landraces. Plant Breeding 117 (1): 33–36.
 
Resende, J. A., Pereira, M. N., Von Pinho, R. G., Fonseca, A. H., and Pereira da Silva, A. R. 2003. Ruminal silage degradability and productivity of forage and grain-type sorghum cultivars. Scientia Agricola 60 (3): 457-463.
 
Rodrigues, P. C., Malosetti, M., Gauch, H. G., and van Eeuwijk, F. A. 2014. A weighted AMMI algorithm to study genotype-by-environment interaction and QTL-by-environment interaction. Crop Science 54 (4): 1555-1570.
 
Rono, J. K., Cheruiyot, E. K., Othira, J. O., Njuguna, V. W., Macharia, J. K., Owuoche, J., Oyier, M,. and Kange, A. M. 2016. Adaptability and stability study of selected sweet sorghum genotypes for ethanol production under different environments using AMMI analysis and GGE biplots. The Scientific World Journal: 1-14.
 
Worede, F., Mamo, M., Assefa, S., Gebremariam, T., and Beze, Y. 2020. Yield stability and adaptability of lowland sorghum (Sorghum bicolor (L.) Moench) in moisture-deficit areas of Northeast Ethiopia. Cogent Food and Agriculture 6 (1): 1-13. Zobel, R. W., and Gauch, H. G. 1988. Statistical analysis of a yield trial. Agronomy Journal 80: 388-393.