ارزیابی قرابت ژنتیکی نمونه‌های جمعیتی خار مریم(Silybum marianum L.) با استفاده از نشانگرهای CDDP و SCoT

نویسندگان

1 استادیار، گروه علوم کشاورزی، دانشگاه پیام نور اصفهان، اصفهان، ایران

2 کارشناسی ارشد، گروه علوم کشاورزی، دانشگاه پیام نور اصفهان، اصفهان، ایران

3 کارشناسی ارشد، گروه علوم پایه، دانشگاه پیام نور، اصفهان، اصفهان، ایران

چکیده

خارمریم با نام علمی Silybum marianum L. گیاهی از خانواده کاسنی است که به دلیل دارا بودن متابولیت‌های ثانویه‌ی مهمی مانند سیلی‌مارین از خواص درمانی بالایی برخوردار است. با توجه به اثر درمانی قابل توجه این گیاه و لزوم کشت آن در ایران، شناخت تنوع ژنتیکی آن به منظور بهره‌گیری در برنامه‌های به‌نژادی از اهمیت بالایی برخوردار است. در تحقیق حاضر، قرابت ژنتیکی هشت نمونه جمعیتی خارمریم با استفاده از نشانگرهای CDDPو SCoT مورد بررسی قرار گرفت. بر اساس نتایج ارزیابی مولکولی، از تعداد هفت آغازگر SCoT، در مجموع 62 نوار قابل‌تشخیص به دست آمد که 53 نوار (48/85%) چندشکل بود در حالی‌که از هفت آغازگر CDDP، در مجموع 58 نوار قابل‌تشخیص به دست آمد که 50 نوار (2/86%) چندشکلی نشان دادند. میانگین شاخص محتوای چندشکل (PIC) حاصل از نشانگرهای CDDP و SCoT به ترتیب برابر با 39/0 و 23/0 بود. نتایج حاصل از تجزیه خوشه‌ای نشانگر SCoTو CDDP توانست نمونه‌های خار مریم را به سه گروه تقسیم کند. نشانگرهای CDDP و SCoT هر دو تنوع درون جمعیتی بیشتری را نسبت به تنوع بین جمعیتی نشان دادند. سطح بالای تنوع ژنتیکی مشاهده شده در نمونه‌های مورد مطالعه می‌تواند در برنامه‌های به‌نژادی آینده مورد استفاده قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment of Genetic Diversity in Milk Thistle (Silybum marianum L.) Accessions Using SCoT and CDDP Markers

نویسندگان [English]

  • M. Koohi- Dehkordi 1
  • A. Rafizadeh 2
  • E. Latifi 3
1 Assistant professor, Agricultural Sciences Group, Payame Nour University of Isfahan, Isfahan, Iran.
2 M. Sc. Graduate, Agricultural Sciences Group, Payame Nour University of Isfahan, Isfahan, Iran.
3 M. Sc. Graduate, Agricultural Sciences Group, Payame Nour University of Isfahan, Isfahan, Iran.
چکیده [English]

Milk Thistle (Silybum marianum L.) is a plant from the Asteraceae family that has high therapeutic properties due to its secondary metabolites, such as silymarin. Considering the significant therapeutic effects of this plant and the necessity of its cultivation in Iran, evaluation of its genetic diversity is important for breeding purposes. In the present study, the genetic relationship of eight milk thistle accessions was studied using CDDP and SCoT markers. Based on the results of the molecular evaluation, a total of 62 detectable bands were obtained from seven selective SCoT primers, of which 53 polymorphic band (85.48%) were found, while from the seven CDDP primers, a total of 58 detectable bands were obtained, of which 50 bands were polymorphic (86.2%). The mean polymorphic information content index (PIC) obtained from CDDP and SCoT markers were 0.39 and 0.23, respectively. Both the CDDP and SCoT markers showed more variation between accessions than within accessions. The high level of genetic diversity observed in the studied accessions can be used in milk thistle breeding programs.

کلیدواژه‌ها [English]

  • Genetic diversity
  • molecular marker
  • metabolite
  • Polymorphism
  • silymarin
Alemardan, A., Karkanis, A., and Salehi, R. 2013. Breeding objectives and selection criteria for milk thistle [Silybum marianum (L.) Gaertn.] improvement. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 41: 340-347.
 
Arif, M., Zaidi, N. W., and Singh, Y. P. 2009. A comparative analysis of ISSR and RAPD markers for study of genetic diversity in shisham (Dalbergia sissoo). Plant Molecular Biology Reporter 27: 488-495.
 
Bhattacharya, P., Kumaria, S., Kumar, S., and Tandon, P. 2013. Start codon targeted (SCoT) marker reveals genetic diversity of Dendrobium nobile Lindl. an endangered medicinal orchid species. Gene 529: 21-26.
 
Carvalho, M. A. 2004. Germplasm characterization of Arachis pintoi Krap. and Greg. (Leguminosae). Ph. D. Thesis, University of Florida, USA. 154pp.
 
Chung, M. Y., Nason, J. D., and Chung, M. G. 2004. Spatial genetic structure in populations of the terrestrial orchid Cephalanthera longibrateata (Orchidaceae). American Journal of Botany 91: 52–57.
 
Collard, B. C. Y., and Mackill, D. J. 2009a. Start codon targeted (SCoT) polymorphism: a simple and novel DNA marker technique for generating gene-targeted markers in plants. Plant Molecular Biology Reporter 27(1): 86.
 
Collard, B. C. Y., and Mackill, D. J. 2009b. Conserved DNA-derived polymorphism (CDDP): a simple and novel method for generating DNA markers in plants. Plant Molecular Biology Reporter 27(4): 558.
 
de Vicente, M. C., Guzmán, F. A., Engels, J., and Rao, V. R. 2005. Genetic characterization and its use in decision making for the conservation of crop germplasm. The role of biotechnology. Pp. 121-128. In: Proceedings of the International workshop on the role of biotechnology for the characterization and conservation of crop, forestry, animal and fishery genetic resources.
 
 
Gorji, A. M., Poczai, P., Polgar, Z., and Taller, J. 2011. Efficiency of arbitrarily amplified dominant markers (SCoT, ISSR and RAPD) for diagnostic finger printing in tetraploid potato. American Journal of Potato Research 88: 226-237.
 
Guo, D. L., Zhang, J. Y., and Liu, C. H. 2012. Genetic diversity in some grape varieties revealed by SCoT analyses. Molecular Biology Reports 39: 5307-5313.
 
 
Hajibarat, Z., Saidi, A., and Talebi, R. 2015. Characterization of genetic diversity in chickpea using SSR markers, start codon targeted polymorphism (SCoT) and conserved DNA-derived polymorphism (CDDP). Physiology and Molecular Biology of Plants 21(3): 365-373.
 
 
Hamidi, R., Siahpoosh, M., Mamaghani, R., and Siahpoosh, A. 2014. Evaluation of the genetic diversity of 10 Milk Thistle (Silybum marianum L.) ecotypes using morphological, phenological and phytochemical traits. Journal of Plant Production 37(1): 37-47.
 
 
Hamidi, H., Talebi, R., and Keshavarzi, F. 2014. Comparative efficiency of functional gene-based markers, start codon targeted polymorphism (SCoT) and conserved dNA-derived polymorphism (CDDP) with ISSR markers for diagnostic finger printing in wheat (Triticum aestivum L.). Cereal Research Communications 42: 558-567.
 
 
Hamrick, J. L., and Godt, M. J. W. 1996. Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society of London Series B351: 1291-1298.
 
 
Hoseini, S. A. 2011. Investigation of genetic diversity of medicinal plants (Silybum marianum L.) using SSR molecular marker. M. Sc. Thesis. Tarbiat Modarres University (in Persian).
 
 
Iranjo, P., Nabati Ahmadi, D., Sorkheh, K., Memeari, H. R., and Ercisli, S. 2016. Genetic diversity and phylogenetic relationships between and within wild Pistacia species populations and implications for its conservation. Journal of Forestry Research 27(3): 685-697.
 
 
Jin, Y., and Lu, B. 2003. Sampling strategy for genetic diversity. Chinese Biodiversity 11(2):155-161.
 
Katiyar, S. K., Meleth, S., and Sharma, S. D. 2008. Silymarin, a flavonoid from Milk Thistle (Silybum marianum L.), inhibits UV induced oxidative stress through targeting infiltrating CD11b+ Cells in mouse skin. Photochemistry and Photobiology 84(2): 266-271.
 
 
Li, T., Guo, J. E., Li, Y., Ning, H., Sun, X., and Zheng, C. 2013. Genetic diversity assessment of chrysanthemum germplasm using conserved DNA-derived polymorphism markers. Scientia Horticulturae 162: 271-277.
 
 
Luo, C., He, X. H., Chen, H., Ou, S. J., Gao, M. P., Brown, J. S., Tondo, C. T. and Schnell, R. J. 2011. Genetic diversity of mango cultivars estimated using SCoT and ISSR markers. Biochemical Systematics and Ecology 39: 676-684.
 
Milbourne, D., Meyer, R., Bradshaw, J. E., Baird, E., Bonar, N., Provan, J., Powell, W., and Waugh, R. 1997. Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato. Molecular Breeding 3: 127-136.
 
 
Mohammadi, S. A., Shokrpour, M., Moghaddam, M., and Javanshir, A. 2011. AFLP-based molecular characterization and population structure analysis of Silybum marianum L. Plant Genetic Resources 9(3): 445-453.
 
 
Murray, M. G., and Thompson, W. F. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8(19): 4321-4326.
 
 
Pakseresht, F., Talebi, R., and Karami, E. 2013. Comparative assessment of ISSR, DAMD and SCoT markers for evaluation of genetic diversity and conservation of chickpea (Cicer arietinum L.) genotypes collected from north-west of Iran. Physiology and Molecular Biology of Plants 19(4): 563-574.
 
 
Poczai, P., Varga, I., Bell, N. E., and Hyvönen, J. 2011. Genetic diversity assessment of bittersweet (Solanum dulcamara, Solanaceae) germplasm using conserved DNA-derived polymorphism and intron-targeting markers. Annals of Applied Biology 159: 141-153.
 
 
Que, Y., Pan, Y., Lu, Y., Yang, C., Yang, Y., Huang, N., and Xu, L. 2014. Genetic analysis of diversity within a Chinese local sugarcane germplasm based on start codon targeted polymorphism. BioMed Research International. http://dx.doi.org/10.1155/2014/468375. 10 pp.
 
 
Rohlf, F. J. 1993. NTSYS-PC. Numerical taxonomy and multivariate analysis system version 1.80 exeter software, Setauket, New York. 44 pp.
 
 
Saghalli, A., Farkhari, M., Salavati, A., Alami Saeid, Kh., and Abdali, A. 2016. Genetic diversity assessment of Milk Thistle (Silybum marianum L.) ecotypes using ISSR markers. Journal of Agricultural Biotechnology 8(3): 51-64. (in Persian).
 
 
Schaal, B. A., Hayworth, D. A., Olsen, K. M., Rauscher, J. T., and Smith, W. A. 1998. Phylogeographic studies in plants: problems and prospects. Molecular Ecology 7(4): 46-474.
 
 
Shokrpour, M., Moghaddam, M., Mohammadi, S. A., Ziai, S. A., and Javan-Shir, A. 2007. Genetic properties of milk thistle ecotypes from Iran for morphological and flavonolignan characters. Pakistan Journal of Biological Sciences 10: 3266-3271.
 
 
Shokrpour, M., Mohammadi, S. A., Moghaddam, M., Ziai, S., and Javanshir, A. 2008. Analysis of morphologic association, phytochemical and AFLP markers in Milk Thistle (Silybum marianum L.). Iranian Journal of Medicinal and Aromatic Plants 24(3): 278-292.
 
 
Sonah, H., Deshmukh, R. K., Singh, V. P., Gupta, D. K., Singh, N. K., and Sharma, T. R. 2011. Genomic resources in horticultural crops: status, utility and challenges. Biotechnology Advance 29: 199-209.
 
 
Souframanien, J., and Gopalakrishna, T. 2004. A comparative analysis of genetic diversity in blackgram genotypes using RAPD and ISSR markers. Theoretical and Applied Genetics 109(8): 1687-1693.
 
 
Thimmappaiah, W., Santhosh, G., Shobha, D., and Melwyn, G. S. 2008. Assessment of genetic diversity in cashew germplasm using RAPD and ISSR markers. Scientia Horticulturae 118: 1-7.
 
 
Trapnell, D. W., Schmidt, J. P., and Hamrick, J. L. 2008. Spatial genetic structure of the Southeastern North American endemic, Ceratiola ericoides (Empetraceae). Journal of Heredity 99: 604-609.
 
 
Wang, X., Fan, H., Li, Y., Sun, X., Sun, X., Wang, W., and Zheng, C. 2014. Analysis of genetic relationships in tree peony of different colors using conserved DNA-derived polymorphism markers. Scientia Horticulturae 175: 68-73.
 
 
Wang, X., Zhao, F., Hu, Z., Critchley, A. T., Morrell, S. L., and Duan, D. 2008. Inter simple sequence repeat (ISSR) analysis of genetic variation of Chonadrus cripus populations from North Atlantic. Aquatic Botany 88: 154-159.
 
 
Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. C. 1990. DNA polymorphsims amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18: 6531-6535.
 
 
Xiong, F., Zhong, R., Han, Z., Jiang, J., He, L., Zhuang, W., and Tang, R. 2011. Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) varieties. Molecular Biology Reports 38(5): 3487-3494.
 
 
Xiong, F. Q., Tang, R. H., Chen, Z. L., Pan, L. H., and Zhuang, W. J. 2009. SCoT: a novel gene targeted marker technique based on the translation start codon. Molecular Plant Breeding 7: 635-638.
 
 
Yan, J., Zhu, M., Liu, W., Xu, Q., Zhu, C., Li, J., and Sang, T. 2016. Genetic variation and bidirectional gene flow in the riparian plant Miscanthus lutarioriparius, across its endemic range: implications for adaptive potential. GCB Bioenergy, 8(4): 764-776.
 
 
Zarei, P., Badakhshan, H., and Mirzakaderi, A. 2014. Characteristics of the genetic diversity in wild Oat using the SCoT molecular marker. Pp. 1-6. In: Proceedings of 1st International Congress and 13th Iranian Congress of Genetics, Tehran, Iran (in Persian).
 
 
Zhang, J., Wengang Xie., Wang. Y., and Zhao, X. 2015. Potential of start codon targeted (SCoT) markers to estimate genetic diversity and relationships among Chinese Elymus sibiricus Accessions. Molecules 20: 5987-6001.