Blanco, A., Simeone, R., Tanzarella, O.A., and Greco, B. 1983. Morphology and chromosome pairing of a hybrid between Triticum durum Desf. and Haynaldia villosa (L.) Schur. Theoretical and Applied Genetics 64: 333-7.
Cai, X., Xu, S.S., and Zhu, X. 2010. Mechanism of haploidy-dependent unreductional meiotic cell division in polyploid wheat. Chromosoma 119: 275-285.
de Storme, N., and Geelen, D. 2013. Sexual polyploidization in plants–cytological mechanisms and molecular regulation. New Phytologist 198: 670-684.
de Storme, N., and Mason, A. 2015. Plant speciation through chromosome instability and ploidy change: Cellular mechanisms, molecular factors and evolutionary relevance. Current Plant Biology 1: 10-33.
Gu, Y.Q., Coleman-Derr, D., Kong, X., and Anderson, O.D. 2004. Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four Triticeae genomes. Plant Physiology 135: 459-470.
Harlan, J.R., and Zohary, D. 1966. Distribution of wild wheats and barley. Science 153: 1074-1080.
Huang, S., Sirikhachornkit, A., Su, X., Faris, J., Gill, B., Haselkorn, R., and Gornicki, P. 2002. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploidwheat. Proceedings of the National Academy of Sciences of the USA 99: 8133-8138.
Islam, A.K.M.R., and Shepherd, K.W. 1980. Meiotic restitution in wheat barley hybrids. Chromosoma 68: 252–261.
Lim, K.B., Ramanna, M.S., de Jong, J.H., Jacobsen, E., and van Tuyl, J.M. 2001. Indeterminate meiotic restitution (IMR): a novel type of meiotic nuclear restitution mechanism detected in interspecific lily hybrids by GISH. Theoretical and Applied Genetics 103: 219-230.
Loureiro, I., Escorial, C., Garcıa-Baudin, J.M., and Chueca, M.C. 2009. Spontaneous wheat-Aegilops biuncialis, Ae. geniculata and Ae. triuncialis amphiploid production, a potential way of gene transference. Spanish Journal of Agricultural Research 7: 614-620.
Maan, S.S., and Sasakuma, T. 1977. Fertility of amphihaploids in Triticinae. Journal of Heredity 57: 76-83.
Mason, A. S., Nelson, M., Yan, G., and Cowling, W. 2011. Production of viable male unreduced gametes in Brassicainterspecific hybrids is genotype specific and stimulated by cold temperatures. BMC Plant Biology 11: 103.
Mason, A. S., and Pires, J.C. 2015. Unreduced gametes: meiotic mishap or evolutionary mechanism? Trends in Genetics 31: 5-10.
Matsuoka, Y., Nasuda, S., Ashida, Y., Nitta, M., Tsujimoto, H., Takumi, S., and Kawahara, T. 2013. Genetic basis for spontaneous hybrid genomedoubling during allopolyploid speciation of common wheat shown by natural variation analyses of the paternal species. PLoS One 8: e68310.
Mirzaghaderi, G., and Fathi, N. 2015. Unreduced gamete formation in wheat: Aegilops triuncialis interspecific hybrids leads to spontaneous complete and partial amphiploids. Euphytica 206: 67-75.
Petersen, G., Seberg, O., Yde, M., and Berthelsen, K. 2006. Phylogenetic relationships of Triticumand Aegilopsand evidence for the origin of the A, B, and D genomes of commonwheat (Triticum aestivum). Molecular Phylogenetics and Evolution 39: 70-82.
Peterson, R., Slovin, J.P., and Chen, C. 2010. A simplified method for differential staining of aborted and non-aborted pollen grains. International Journal of Plant Biology, 1: e13.
Ramsey, J. and Schemske, D.W. 1998. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Review of Ecology and Systematics 29: 467-501.
Schmidt, A., Schmid, M.W., and Grossniklaus, U. 2015. Plant germline formation: common concepts and developmental flexibility in sexual and asexual reproduction. Development 142: 229-241.
Silkova, O.G., Shchapova, A.I., and Shumny, V.K. 2011. Patterns of meiosis in ABDR amphihaploids depend on the specific type of univalent chromosome division. Euphytica 178: 415-426.
Tayalé, A., and Parisod, C. 2013. Natural pathways to polyploidy in plants and consequences for genome reorganization. Cytogenetic and Genome Research 140: 79-96.
Tiwari, V.K., Rawat, N., Neelam, K., Randhawa, G.S., Singh, K., Chhuneja, P., and Dhaliwal, H.S. 2008. Development of Triticum turgidum subsp. durum – Aegilops longissima amphiploids with high iron and zinc content through unreduced gamete formation in F1 hybrids. Genome 51: 757-766.
Wang, C.-J., Zhang, L.-Q., Dai, S.-F., Zheng, Y.-L., Zhang, H.-G., and Liu, D.-C. 2010. Formation of unreduced gametes is impeded by homologous chromosome pairing in tetraploid Triticum turgidum × Aegilops tauschii hybrids. Euphytica 175: 323-329.
Xu, S., and Joppa, L. 2000. First‐divisionrestitution in hybrids of Langdon durum disomic substitution lines with rye and Aegilops squarrosa. Plant Breeding 119: 233-241.
Xu, S.J., and Dong, Y.S. 1992. Fertility and meiotic mechanisms of hybrids between chromosome autoduplication tetraploid wheats and Aegilops species. Genome, 35: 379-384.
Zeng, D.-Y., Hao, M., Luo, J.-T., Zhang, L.-Q., Yuan, Z.-W., Ning, S.-Z., Zheng, Y.-L., and Liu, D.-C. 2014. Amphitelic orientation of centromeres at metaphase I is an important feature for univalent-dependentmeiotic nonreduction. Journal of Genetics 93: 531-534.
Zhang, L.-Q., Liu, D.-C., Zheng, Y.-L., Yan, Z.-H., Dai, S.-F., Li, Y.-F., Jiang, Q., Ye, Y.-Q., and Yen, Y. 2010. Frequent occurrence of unreduced gametes in Triticum turgidum–Aegilops tauschii hybrids. Euphytica 172: 285-294.
Zhang, L.-Q., Yen, Y., Zheng, Y.-L., and Liu, D.-C. 2007. Meiotic restriction in emmer wheat is controlled by one or more nuclear genes that continue to function in derived lines. Sexual Plant Reproduction 20: 159-166.