Effectiveness of Resistance Genes Transferred from Pea (Pisum sativum) to Canola (Brassica napus) Against Sclerotinia Stem Rot (Sclerotinia sclerotiorum)

Authors

Department of Agronomy and Plant Breeding, College of Agricultural Sciences and Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

Abstract

Sclerotinia stem rot caused by Scelrotinia sclerotiorum is one of the devastating diseases of colza (canola) worldwide. Less information is available about the resistance to this disease. Effectiveness of three disease related genes originated from pea and transferred to colza against Sclerotinia was investigated in this study using three Westar cv. transgenes PR10.1, Chitinase, and DRR206. The research was carried out in two experiments. Experiment one tried to transfer the three transgenes to four commercial cultivars Apollo, Sentry, OAC Triton and MillenniUM 03 in order to examine the effects of different genetic backgrounds on disease response. This was accomplished by crossing the commercial cultivars and the transgenic lines followed by repeated backcrosses with the commercial cultivars. In experiment two the idea of pyramiding the three transgenes two-by-two was tested. A regular cross between Westar transgenic lines was done for different transgene combinations. Three different tests: stem test, petiole inoculation technique and detached leaf assay were used for indoor disease screening. The Based on the results of disease screening, in experiment one, the best disease reduction was observed in PR10.1 in Sentry and Apollo combinations. In experiment two, PR10.1 × DRR206 combination showed the best average. Overally, PR10.1 had the best yield in decreasing the diseases. The promising lines mentioned above can be tested in field trials leading to their registration and commercialization.

Keywords


Anonymous 2010. http://faostat.fao.org.
 
 
Fang, J. 1993. Evaluation of screening methodologies for selection of resistance in oilseed rape to sclerotinia stem rot. Available at http://amicus.collectionscanada.gc.ca/s4-bin/Main/ItemDisplay?l=0&l_ef_l=0&id=&v=1&lvl=2&coll=18&rt=1&itm=13902688&rsn=S_WWWtaafEDVkI&all=1&dt=+TW+%7Csclerotinia%7C+AND+UN+%7CManitoba%7C&spi=-&rp=2&v=1.
 
 
Garg, H., Atri, C., Sandhu, P.S., Kaur, B., Renton, M., Banga, S. K., Singh, H., Singh, C., Barbetti, M. J., and Banga, S. S. 2010. High level of resistance to Sclerotinia sclerotiorum in introgression lines derived from hybridization between wild crucifers and the crop Brassica species B. napus and B. juncea. Field Crops Research 117(1): 51–58Available at http://linkinghub.elsevier.com/retrieve/pii/S037842901000033X (verified 14 August 2012).
 
 
Ge, X. T., Li, Y. P., Wan, Z. J., You, M. P., Finnegan, P. M., Banga, S. S., Sandhu, P. S., Garg, H., Salisbury, P. A., and Barbetti, M. J. 2012. Delineation of Sclerotinia sclerotiorum pathotypes using differential resistance responses on Brassica napus and B. juncea genotypes enables identification of resistance to prevailing pathotypes. Field Crops Research 127: 248-258Available at http://linkinghub.elsevier.com/retrieve/pii/S0378429011003893 (verified 17 August 2012).
 
 
Mei, J., Qian, L., Disi, J. O., Yang, X., Li, Q., Li, J., Frauen, M., Cai, D., and Qian, W. 2011. Identification of resistant sources against Sclerotinia sclerotiorum in Brassica species with emphasis on B. oleracea. Euphytica 177(3): 393–399Available at http://www.springerlink.com/index/10.1007/s10681-010-0274-0 (verified 17 August 2012).
 
 
Rahmanpour, S., Backhouse, D., and Nonhebel, H. M. 2011. Reaction of Brassica species to Sclerotinia sclerotiorum applying inoculation techniques under controlled conditions. Crop Breeding Journal 1(2): 143–149.
 
 
Verma, S. S., Yajima, W. R., Rahman, M. H., Shah, S., Liu, J. J., Ekramoddoullah, A. K. M. and Kav, N. N. V. 2012. A cysteine-rich antimicrobial peptide from Pinus monticola (Pm AMP1) confers resistance to multiple fungal pathogens in canola (Brassica napus). Plant Molecular Bioloy 79 (1-2): 61-74 Available at http://www.ncbi.nlm.nih.gov/pubmed/22351159 (verified 17 August 2012).
 
 
Wang, Y., and Fristensky, B. 2001. Transgenic canola lines expressing pea defense gene DRR206 have resistance to aggressive blackleg isolates and to Rhizoctonia solani. Molecular Breeding 2: 263-271.
 
 
Wang, Y., Nowak, G., Culley, D., Hadwiger, L. A., and Fristensky, B. 1999. Constitutive expression of pea defense gene DRR206 confers resistance to blackleg (Leptosphaeria maculans) disease in transgenic canola (Brassica napus). Molecular Microbe Interaction.. 12(5): 410-418Available at http://apsjournals.apsnet.org/doi/abs/10.1094/MPMI.1999.12.5.410.
 
 
Wang, Z., Mao, H., Dong, C., Ji, R., Cai, L., Fu, H., and Liu, S. 2009. Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Molecular Microbe Interaction. 22(3): 235-244Available at http://www.ncbi.nlm.nih.gov/pubmed/19245318.
 
 
Wu, J., Fernando, W. G. D., and Scarth, R. 2001. Identification of disease resistance to Sclerotinia sclerotiorum in oilseed rape by greenhouse inoculation. p. 252-256. In: Proceedings of International Symposium on Rapeseed Science, Wuhan, China.
 
 
Wu, J., Wu, L., Liu, Z., Qian, L., Wang, M., Zhou, L., Yang, Y., and Li, X. 2009. A plant defensin gene from Orychophragmus violaceus can improve Brassica napus’ resistance to Sclerotinia sclerotiorum. African Journal of Biotechnology 8 (22): 6101-6109.
 
 
Xu, L., Huang, J., Liu, X., Qin, R., and Liu, S. 2009. Cloning of Brassica napus EIN3 gene and its expression induced by Sclerotinia sclerotiorum. Agricultural Science and Technology 10(2): 33-36.
 
 
Yajima, W., Liang, Y., and Kav, N. N. V. 2009. Gene disruption of an arabinofuranosidase/β-xylosidase precursor decreases Sclerotinia sclerotiorum virulence on canola tissue. Molecular Plant-Microbe Interaction. 22(7): 783-789Available at http://www.ncbi.nlm.nih.gov/pubmed/19522560.Yajima, W., Verma, S. S., Shah, , Rahman, M. H., Liang, Y., and Kav, N. N. V. 2010. Expression of anti-sclerotinia scFv in transgenic Brassica napus enhances tolerance against stem rot. N. Biotechnol. 27(6): 816-821Available at http://www.ncbi.nlm.nih.gov/pubmed/20933110 (verified 14 August 2012).
 
 
Yin, X., Yi, ., Chen, W., Zhang, W., Tu, J., Fernando, W. G. D., and Fu, T. 2010. Mapping of QTLs detected in a Brassica napus DH population for resistance to Sclerotinia sclerotiorum in multiple environments. Euphytica 173(1): 25-35Available at http://www.springerlink.com/index/10.1007/s10681-009-0095-1 (verified 17 August 2012).
 
 
Zhang, Y., Hu, C., Zhang, C., and Gan, L. 2011. Cloning and expression analysis of Rsk in Brassica napus induced by Sclerotinia sclerotiorum. Acta Physiological Plantarum 33(4): 1277-1283Available at http://www.springerlink.com/index/10.1007/s11738-010-0658-8 (verified 18 August 2012).
 
 
Zhao, J., Peltier, A. J., Meng, J., Osborn, T. C., and Grau, C. R. 2004. Evaluation of sclerotinia stem rot resistance in oilseed Brassica napus using a petiole inoculation technique under greenhouse Conditions. Plant Disease 88(9): 1033-1039Available at http://apsjournals.apsnet.org/doi/abs/10.1094/PDIS.2004.88.9.1033.