Estimation of Gene Action for Grain Yield and Yield-related Traits in Grain Maize (Zea mays L.) under Moisture Stress Conditions

Authors

1 M.Sc. Student, Faculty of Agriculture, Bu- Ali Sina University, Hamedan, Iran.

2 Assistant Professor, Faculty of Agriculture, Bu- Ali Sina University, Hamedan, Iran.

3 Associate Professor, Faculty of Agriculture, Bu- Ali Sina University, Hamedan, Iran

4 Professor, Agricultural Engineering Research Department, Golestan, Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Gorgan, Iran.

5 Researcher, Field and Horticultural Crops Research Department, Golestan, Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Gorgan, Iran.

Abstract

To determine the type of genes action and estimate genetic parameters under moisture stress condition, two inbred lines of S0200237 (P1) and ILYH0231 (P2), sensitive and resistant to moisture stress, respectively, were crossed in 2013. Six generations P1, P2, F1, F2, BC1 and BC2 were planted in a randomized complete block design in 2015 and generation mean analysis was performed. Significant and positive heterosis was observed for ear biomass/ plant and ear-grain yield/plant. The joint scale test and the average of gene dominance confirmed the inadequacy of the additive-dominance model for most traits, indicating the importance of epistatic and over-dominant effect in genetic control of the traits. The results showed that row number/ear, ear diameter, cob diameter and grain depth were controlled by additive effect. The broad and narrow sense heritability of the ranged varied from 68.9 to 88.6 and 13 to 50.40, respectively. The average of genes number controlling the traits varied from 1-7 genes for grain yield. The maximum positive heterosis was observed for ear biomass and grain yield per plant. Generally, selection in early generations for grain yield-related traits with high narrow sense heritability, including the number of rows per ear, will improve grain yield in advanced generations. In addition, selection in early generations to reduce cob percent, to some extent, does not result in a significant reduction in total ear weight, and will result in an increase in harvest index, thus improves grain yield under moisture stress conditions.

Keywords


Ali, G., Rather, A. C., Ishfaq, A., Dar, S. A., Wani, S., and Khan, M. N. 2007. Gene action for grain yield and its attributes in maize (Zea mays L.). International Journal of Agricultural Science 3: 278.
 
Ashofteh Beiragi, M., Sar, B. A. S., Geive, H. S., Alhossini, M. N., and Rahmani, A. 2012. Application of the multivariate analysis method for some traits in maize. African Journal of Agricultural Research 7: 1524-1533.
 
Ashofteh Beiragi, M., Ebrahimi, M., Mostafavi, Kh., Golbashy, M., and Khavari Khorasani, S. 2011a. A study of morphological basis of corn (Zea mays L.) yield under drought stress condition using correlation and path coefficient analysis. Journal of Cereals and Oilseeds 2: 32-37.
 
Azizi, F., Rezai, A. M., and Saeidi, G. 2006. Generation mean analysis to estimate genetic parameters for different traits in two crosses of corn inbred lines at three planting densities. Journal of Agricultural Science and Technology 8: 153-169.
 
Betran, F. J., Ribaut, J. M., Beck, D., and Gonzalez de Leon, D. 2003. Genetic diversity, specific combining ability and heterosis in tropical maize under stress and non-stress environments. Crop Science 43: 797-806.
 
Bhavana, P., Singh, R. P., and Gadag, R. N. 2011. Gene action and heterosis for yield and yield components in maize (Zea mays L.). Indian Journal of Agricultural Sciences 81: 163-166.
 
Boyer, J., and Westgate, M. 2004. Grain yields with limited water. Journal of Experimental Botany 55: 2385-2394.
 
Butruille, D. V., Silva, H. D., Kaeppler, S. M., and Coors, J. G. 2004. Response to selection and genetic drift in three populations derived from the golden glow maize population. Crop Science 44:1527–1534.
 
Campos, H., Cooper, M., Habben, J. E., Edmeades G. O., and Schussler, J. R. 2004. Improving drought tolerance in maize: A view from industry. Field Crops Research 90(1):19-34.
 
Dhanda, S. S., and Sethi, G. S. 1998. Inheritance of excised- leaf water loss and relative water content in bread wheat (Triticum aestivum L.). Euphytica 104: 39-47.
 
Dorri, P., Khavari Khorasani, S., Valizadeh, M., and Taheri, P. 2014. The study of inheritance and gene effects on yield and agronomic traits in early generations of Dehghan maize. Journal of Plant Genetic Research 1: 2 (in Persian).
 
El-Badawy, M. El. M. 2012. Estimation of genetic parameter in three maize crosses for yield and its attributes. Asian Journal of Crop Science 4: 127-138.
 
Farnham, D.E. 2001. Row spacing, plant density and hybrid effects on corn grain yield and moisture. Agronmy Journal 93: 1049-1053.
 
Ghaed Rahmat, M., Choukan, R., Siasar, B. A., and Zamani, M. 2007. The study of genetic control of resistance to common smut in maize (Zea Mays L.). Iranian Journal of Crop Science 9 (1): 77-89 (in Persian).
 
Ghannadha, M. R. 2005. The study of the inheritance of incubation period in four wheat cultivars to yellow rust. Journal of Crop Science 1: 53-71 (in Persian).
 
Golabadi, M., Arzani, A., and Meybodi, A. M. 2008. The effect of terminal water stress on yield and morpho-physiological traits in F3 families of durum wheat. Iranian Journal of Field Crops Research 6: 405-418 (in Persian).
 
Haq, M. I., Ajmal, S. U., Munir, M., and Gulfaraz, M. 2010. Gene action studies of different quantitative traits in maize. Pakistan Journal of Botany 42: 1021-1030.
 
Haq, M. I. U., Ajmal, S., Kamal, N., Khanum, S., Siddique, M., and Kiani, M. Z. 2013. Generation mean analysis for grain yield in maize. The Journal of Animal and Plant Sciences 23: 1151-1146.
 
Hinze, L. L., and Lamkey, K. R. 2003. Absence of epistasis for grain yield in elite maize hybrids. Crop Science 43:46–56.
 
Hussain, I., Ahsan, M., Saleem, M., and Ahmad, A. 2009. Gene action studies for agronomic traits in maize under normal and water stress conditions. Pakistan Journal of Science 46: 107-112.
 
Hussain, M., Shah, K. N., Ghafoor, A., Kiani, T. T., and Mahmood, T. 2014. Genetic analysis for grain yield and various morphological traits in maize (Zea mays L.) under water stress envaironments. The Journal of Animal and Plant Sciences 24: 1230-1240.
 
Iqbal, M., Khan, K., Rahman, H., and Sher, H. 2010. Detection of epistasis for plant height and leaf area per plant in maize (Zea mays L.) from generation means analysis. Maydica 55: 33-39.
 
Iqbal, M. Z., and Nadeem, M. A. 2003. Behaviour of some polygenic characters in cotton (Gossypium hirsutum L.). Asian Journal of Plant Sciences 2: 485-490.
 
Ishfaq, A. 2011. Generation mean analysis of reproductive and yield traits in maize (Zea mays L.). SAARC Journal of Agriculture 9: 37-44.
 
Jawaharlal, J., Reddy, G. L., and Kumar, R. S. 2012. Heterosis for yield component traits in maize (Zea mays L.). Indian Journal of Agricultural Research 46: 184-187.
 
Jebaraj S., Selvakumar, A., and Shanti, P. 2010. Study of gene action in maize hybrids. Indian Journal of Agricultural Research 44: 136-140. Kang, M. S. 1994. Applied quantitative genetics. Baton Rouge, LA 70810-6966 USA. 322 pp.
 
Kearsey, M. J., and Pooni, H. S. 1998. Genetical analysis of quantitative traits. Chapman and Hall Press. 381 pp.
 
Khodarahmpour, A. 2011. Genetic control of different traits in maize inbred lines (Zea mays L.) using graphical analysis. African Journal of Agricultural Research 6: 1661-1666.
 
Kumar, P., and Gupta, S. C. 2003. Genetic analysis in maize. Journal of Research, Birsa Agricultural University 15: 107-110.
 
Lamkey, K. R., and Lee, M. 2005. Quantitative genetics, molecular markers and plant improvement. http://corn2.agron.iastate.edu/Lamkey/Publications/PDF/australia.htm Lande, R. 1981. The minimum number of genes contributing to quantitative variation between and within population. Genetics 99: 541-553.
 
Mahmud, I., and Kramer, H. H. 1951. Segregation for yield, height and maturity following a soybean cross. Agronomy Journal 43: 605-609.
 
Majid, S., Rajab, C., Eslam, M., and Farokh, D. 2010. Estimation of combining ability and gene action in maize using line × tester method under three irrigation regimes. Journal of Research in Agricultural Science 6: 19-28.
 
Mather, K., and Jinks, J. L. 1982. Biometrical genetics. The study of continuous variation. (3rd ed.). Chapman and Hall, London. 396pp.
 
Matzinger, D. F. 1963. Experimental estimates of genetic parameters and their applications in self fertilizing plants. NAS-NRC 982: 253-279.
 
Micheal, A. M and Ojha, T.P. 1987. Principles of Agricultural Engineering. Vol. II, Jain Brothers Publisher, New Delhi. 320pp.
 
Mihailov, M. E., and Chernov, A.A. 2006. Using doubled haploid lines for quantitative trait analysis. Maize Genetics Cooperation Newsletter 80: 30.
 
Mihaljevic, R., Friedrich Utz, H., and Melchinger, E. 2005. No evidence for epistasis in hybrid and per se performance of elite European flint maize inbreds from generation means and QTL analyses. Crop Science 45: 2605-2613.
 
Premalatha, M., and Kalamani, A. 2010. Heterosis and combining ability studies for grain yield and growth characters in maize (Zea mays L.). Indian Journal of Agricultural Research 44: 62-65.
 
Raghu, B., Suresh, J., Geetha, A., Saidaiah, P., and Sudheer Kumar, S. 2012. Heterosis for grain yield and its component traits in maize (Zea mays L.). Journal of Research ANGRAU 40: 83-90.
 
Ram Reddy, V., Seshagiri Rao, A., and Sudarshan, M. R. 2011. Heterosis and combining ability for grain yield and its components in maize (Zea mays L.). Journal of Research ANGRAU 39: 6-15.
 
Roff, D. A., and Emerson, K. 2006. Epistasis and dominance: Evidence for differential effects in life history versus morphological traits. Evolution 60: 1981-1990.
 
Roy, D. 2000. Plant breeding analysis and exploitation of variation. Alpha Science International LTD. 701pp.
 
Sandeep Kumar, T., Mohan Reddy, D., Saida Naik, V., Isha Parveen, S., and Subbaiah, P. V. 2012. Gene action for yield and morpho-physiological traits in maize (Zea mays L.) inbred lines. Journal of Agricultural Science 4: 15-26.
 
Shahrokhi, M., Khavari Khorasani, S., and Ebrahimi, A. 2011. Generation mean analysis for yield and yield components in maize (Zea mays L.). Journal of Pant Physiology and Breeding 1: 59-72.
 
Shahrokhi, M., Khavari Khorasani, S., and Ebrahimi, A. 2013. Study of genetic components in various maize (Zea mays L.) traits, using generation mean analysis method. International Journal of Agronomy and Plant Production 4: 405-412.
 
Shiri, M. R., Choukan, R., and Aliyev, R. 2015. Drought stress effects on gene action and combining ability of maize inbred lines. Seed and Plant Improvement Journal 31-1: 421-440 (in Persian).
 
Singh, P. K., and Roy, A. K. 2007. Diallel analysis of inbred lines in maize (Zea mays L.). International Journal of Agriculture Sciences 3: 213-216.
 
Sofi, P., Rather, A. G., and Venkatesh, S. 2006. Detection of epistasis by generation means analysis in maize hybrids. Pakistan Journal of Biological Sciences 9: 1983-1986.
 
Sumalini, K., and Shobha Rani, T. 2011. Heterosis and combining ability for polygenic traits in late maturity hybrids of maize, (Zea mays L.). Madras Agricultural Journal 97: 340-343.
 
Taheri-Tarigh, S., Ramezanpour, S. S., Choukan, R., Soltanlou, H., Navabpour, S., and Gilani, K. 2017. Combining ability of maize lines from tropical and subtropical germplasm using temperate testers. Seed and Plant Improvement Journal 33-1: 299-314 (in Persian).
 
Warnner, J. N. 1952. A method for estimating heritabilit. Agronomy Journal 44: 427-430.
 
Wattoo, F. M., Saleem, M., Ahsan, M., Sajjad, M. and Ali, W. 2009. Genetic analysis for yield potential and quality traits in maize (Zea mays L.). American-Eurasian Journal of Agricultural and Environmental Sciences 6: 723-729.
 
Zare, M., Choukan, R., Majidi Heravan, E., and Bihamta, M. R. 2008. Generation mean analysis for grain yield and its related traits in maize (Zea mays L.). Seed and Plants 24: 63-81 (in Persian).