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Advanced AMMI Bayesian Models for Analysis of Grain Yield Stability of Maize
Hybrids in Multi-Environment Trials: A Comparison of Classical and Bayesian
Approaches
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Table 1. Name, geographical coordinates, climatic conditions, and soil type of the research field stations
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Field station o oS (m) Latitude Longitude (°C) (mm) Soil type
Karaj =5 1321 35°49'N 51°00'E 16.76 268 Clay loam
Moghan Olae 73 39°41'N 47°32'E 17.85 327 Clay loam
Shiraz Sl 1604 29°46'N 52°43'E 17.53 330 Silt clay loam
Isfahan Olgiel 1545 32°51'N 51°58'E 15.25 116 Clay loam
Hamadan Oldes 1741 36°46' N 48°34'E 11.30 317 Clay loam
Kerman ol S 1200 28°45'N 56° 36' E 22.67 123 Clay loam
Mashhad Al 995 32°59'N 36°19'E 13.89 181 Sandy loam
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Table 2. Mean of the marginal posterior effects obtained from the AMMI analysis for
grain yield (t ha) of the studied maize hybrids, the lower and upper limits of the 95%
highest posterior density (HPD) credible intervals
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No. Cross name lower HPFD  Mean HPD  Upper HPD
1 KE79017/5111xK1264/5-1 10.53 11.31 12.09

2 KE72012/12xB73 9.80 10.58 11.33

3 KE76009/311xB73 10.13 10.90 11.66

4 KE77003/3xB73 10.00 10.76 11.53

5 KE79015/6222xB73 9.51 10.28 11.02

6 OH43/1-42x B73 10.09 10.86 11.62

7 Kousha=K1263/17xS61 8.50 9.26 10.00

8 Dehghan=KE72012/12xK1263/1 9.36 10.13 10.88

9 Taha=KE76009/311xK1264/5-1 10.20 10.95 11.71
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Fig. 1. Mean marginal posterior effects (t ha™) from the Bayesian AMMI analysis of grain yield
for a) nine maize hybrids and b) 14 environments. The lower and upper bounds of Highest
Posterior Density (HPD) creditable intervals at the 90% probability level are also shown
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Fig. 2. Biplots from the maize multi-environment trialw featuring nine promising hybrids
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Fig. 3. Biplot of Bayesian AMMI of the mean posterior estimates for genotype x environment
interaction components for hybrids (left) and environments (right) at the 90% highest
posterior density (HPD) credible intervals for hybrids and the environments that do not

include the value of zero for the first principal component at the 90% probability level
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Fig. 4. Estimated values of grain yield (Y) and the weighted average of absolute yield
stability (WAAS), together with WAASY, for the maize hybrids based on the and classic
(a and b) and Bayesian AMMI (c and d) approaches, considering weights of 65% and
35% for grain yield and yield stability, respectively
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AMMI analysis for grain yield of maize hybrids
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ABSTRACT
Shiri, M., Moharramnejad, S., Najafinezhad, H., Estakhr, A., Jafari, P., Kiani, M R., Mottaghi,
M., Ahmadi, B. and Ebrahimi, L. 2025. Advanced AMMI Bayesian models for analysis of grain
yield stability of maize hybrids in multi-environment trials: A comparison of classical and bayesian
approaches. Seed and Plant, 40, pp.599-624 (in Persian).

Plant breeders commonly use the AMMI model to analyse multi-environment trials data
and to identify genotype x environment interaction (GEI) patterns. AMMI-based indices such
as the Weighted Average of Absolute Scores (WAAS) and the Weighted Average of
Absolute Scores combined with yield (WAASY) help breeders to select superior genotypes
across different environments. Despite its wide application, the classical AMMI model has
limitations in statistically evaluating and representing the uncertainty of GEls. In this study,
six maize promising hybrids and three commercial checks (Kosha, Dehgan and Taha) were
evaluated using randomized complete block design with three replications in seven
agricutural research field stations; Karaj, Mashhad, Isfahan, Hamedan, Kerman, Moghan, and
Shiraz in Iran over two cropping seasons 2021-2023. A Bayesian AMMI model and its
indices, including B-WAAS, B-WAASY, and the Mahalanobis Stability Index (SM), were
applied to for analyzing yield and yield stability of studied maize hybrids, and the results were
compared with the classical AMMI model. The Bayesian AMMI model explained 88.01%
of GEI variance, while the classical AMMI model explained 74.10%. Hybrids no. 3 and 4
were the most yield-stable, and hybrids no. 6 and 9 the least yield-stable. Combined indices
and SMT plots identified hybrids no. 1, 3, and 4 as high-yielding and yild-stable. Therefore,
hybrids no. 1 and 3 can be used in the maize breeding programs and recommended for being
commercially released for target maize growing areas.

Keywords: Maize, Bayesian stability indices, genotype x environment interaction,
specific adaptation, wide adaptation.
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Introduction

Maize (Zea mays L..) is one of the most important agricultural crops due to its high nutritional
and commercial values, and is widely used for human food and animal feed. Plant breeding plays
acrucial role in developing high-yielding and stress-tolerant genotypes (Shiri et al., 2024). Hybrid
development, a major approach in genetic improvement, enables the combination of desirable
phenotypes with superior genetics, leading to enhanced yield performance and stability, and
adaptability. Since genotypes respond differently to environmental conditions, multi-
environment trials (METS) are essential in final breeding stages to evaluate genotype performance
and assess genotype x environment interactions (GEI).

The AMMI (Additive Main Effects and Multiplicative Interaction) model is widely used
for analysing METSs data and identifying yield stability and mega-environments (Olivoto et
al., 2019). However, the classical AMMI model has statistical limitations. The Bayesian
AMMI model overcomes these by incorporating prior information and estimating full
posterior distributions (Crossa et al., 2011). Recent study (Nascimento et al., 2025) has
introduced Bayesian-based indices such as B-WAAS, B-WAASY, and the Mahalanobis
Stability Measure (SM), which provide more accurate inference and visualization of
uncertainty. Therefore, this study aimed to evaluate the yield performance and stability of
maize promising hybrids using Bayesian AMMI and its indices compared with classical
AMMI to support more informed maize hybrid breeding decisions.

Materials and Methods

In this study, six maize promising hybrids and three commercial checks (Kosha, Dehgan
and Taha) were evaluated using randomized complete block design with three replications in
seven Agricutural research field stations; Karaj, Mashhad, Isfahan, Hamedan, Kerman,
Moghan, and Shiraz in Iran over two cropping seasons 2021-2023. Each plot consisted of four
5.44 m rows spaced 0.75 m apart, with 0.32 m between hills and two plants per hill, resulting
in a density of about 83,000 plants ha™'. Standard agronomic practices were applied, including
irrigation, weed and pest management, and fertilization based on local soil tests.

The Bayesian AMMI model was implemented as described by Crossa et al. (2011),
where phenotypic responses followed a multivariate normal distribution with priors
assigned to all parameters. Posterior distributions were estimated using Markov Chain
Monte Carlo (MCMC) with 30,000 replications, a burn-in of 5,000 replications, and
thinning every five samples via the Gibbs sampler. Convergence was assessed using
Geweke and Raftery—Lewis diagnostics. Bayesian AMMI-based indices; B-WAAS, B-
WAASY, and the Mahalanobis stability index (SM)—were derived directly from
posterior samples. The Mahalanobis stability trait (SMT) plot was generated to visualize
yield stability relationships and 90% HPD intervals. All analyses were conducted in R
using the ChiDO framework (Nascimento et al., 2025).

Results and Discussion
The Bayesian AMMI model demonstrated satisfactory convergence, with 98.58% of
parameters showing |Z| <1.96 and 92.63% having Raftery—Lewis <5, indicating stable
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MCMC chains. Posterior mean grain yield of nine maize hybrids in 14 environments
ranged from 9.26 t ha™! (hybrid no. 7) to 11.31 t ha™! (hybrid no. 1), with hybrids no. 1, 3,
and 9 performing the top-yielding group. Grain yields varied widely (3.20-15.08 t ha™")
in different environments, reflecting high GEI. The Bayesian AMMI analysis explained
88.01% of the interaction variance outperforming the classical AMMI model (74.10%),
and highlighting its effectiveness in capturing GEI patterns.

Biplot analysis based on the Bayesian AMMI model, using posterior means and 90% HPD
credible intervals, identified hybrids no. 3, 5, 6, and 9 and environments 5, 7, 11, and 12 as
major contributors to GEI, indicating their strong influence on genotype-by-environment
variability. HPD credible inetrvals visualized parameter uncertainty and confirmed genotype-
specific adaptation. Stability indices ranked hybrids no. 3 and 4 as the most yield-stable, while
hybrid no. 6 and 9 were least yield-stable. Combined indices, WAASY, B-WAASY and the
SMT pilot highlighted hybrids no. 1, 3, and 4 as both high-yielding and yiled-stable. Overall,
the Bayesian AMMI approach provided a robust and informative framework for simultaneous
evaluation of grain yield and yiled stability of the studied maize hybrids, and accounted for
uncertainty and enabling more reliable selection of superior maize hybrids for being used in
maize breeding programs and commercial release.
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